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ABSTRACT 

This dissertation concerns the elucidation of degradation mechanisms of 

organic contaminants in aqueous suspension of Ti02, and extending understanding 

of photo catalysis condition to optimize degradation efficiency. 

The degradation mechanism of maleic acid, an important intermediate from 

the photocatalytic degradation of aromatic contaminants, was investigated via 

product distribution study and control experiments. The understanding of the 

mechanism of degradation of these compounds can assist us for the ascertaining of 

the better conditions to perform the mineralization of recalcitrant organic 

compounds. 

The challenge to degrade cyanuric acid, a recalcitrant species by modifying 

Ti02 suspension was carried out. The addition of fluoride to aqueous suspensions of 

Ti02 has proved to be an important mechanistic tool in unraveling a long-standing 

conundrum in photocatalytic degradation. By using this method in parallel with other 

methods for producing homogeneous hydroxyl-type reagents, it is shown that 

cyanuric acid is susceptible to degradation under easily accessible conditions. 

There are isotope studies of photocatalysis of dimethyl phenylphosphonate, 

a simple and safe form of organic phosphonate. The oxidative degradation of 

phosphonate has received significant attention because of the presence of this 

group in warfare agents and pesticides. An important unsettled mechanistic point is 
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the mechanism by which the methyl is removed. Through the isotope studies of 

Ti02-mediated photocatalytic degradation of phosphonates, now we can understand 

removal of the alkyl ester portion of the compounds to produce phosphonic acid 

monoesters among the primary steps. The retention of 180 in the formation of MMPP 

clearly demonstrates that the dealkylation mechanism involves degradation of the 

methyl group exclusively, and neither attack at phosphorus by HOads nor a related 

species, nor photoinduced hydrolysis. 

As an attempt to activate modified Ti02 photocatalysts with visible light and to 

decrease the rapid recombination of excited electrons/holes during photoreaction, 

W0x-Ti02 powder was prepared by a sol-gel method. The W0x-Ti02 catalysts were 

characterized by X-ray Diffraction (XRD), X-ray Photoelectron spectrometry (XPS), 

and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-

EDX). The degradation of 4-methoxyresorcinol and 4-chlororesorcinol by using 

W0x-Ti02 under visible light irradiation was observed. The modification of Ti02 by W 

shows its benefit of utilizing visible light for photocatalytic degradation of organic 

compounds. Differently prepared (incipient wetness method for P25 Degussa and 

PC 50 Millennium Chemical) W0x-Ti02 also shows similar effect of photo-activation 

by visible light. This is the first report that directly compared the photocatalytic 

degradation efficiency between W0x-Ti02 prepared by traditional incipient wetness 

method and W0x-Ti02 by sol-gel method. W0x-Ti02 by sol-gel method consistently 

shows higher degradation efficiency (c.a. 20 %). It is difficult to explain thoroughly 

this result at this point because photocatalytic activity is affected by much more 
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factors than simply particle size i.e., agglomerate size, crystallization condition, 

surface property also affect to photocatalytic activity. One possible speculation for 

better photocatalytic activity of W0x-Ti02 by sol-gel method may due to less 

formation of aggregate by W0x-Ti02 from sol-gel method. Future work could refine 

the degradation efficiency precisely by controlling the particle sizes, defective sites 

of Ti02, agglomerate size etc. 
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Chapter 1 

General Introduction 

1.1 Introduction 

With the increasing demands of higher living standard accompanied by 

exploitation of nature and mass productions, natural self-cleaning processes have 

not been able anymore to remedy the environmental load caused by the ever-

increasing world population and industrial processes. Water is an indispensable 

element for both existence and living of human. Thus, our main concern has to 

focus on our water reserves, because pollution from both the atmosphere and soil 

will eventually enter the aqueous phase by deposition and penetration respectively 

[1]-

Pollution by mankind is caused by variety of activity for sustaining life for e.g. 

nutrition, transportation, accommodation, synthesis, and energy exploitation. 

Although probably not always acknowledged, chemical activity is indispensable to 

sustain life; also it is needed to comply with a high standard of living. Examples are 

medicines, cleaning and disinfecting products, cosmetics, stabilizers, artificial 

fertilizers, fuel, batteries, polymers, paints, and dyes. Both synthesis and application 

of these product classes inevitably yield pollution. In addition to biological waste like 

carbohydrates, proteins, urea, fats, food & vegetation residues and carbon dioxide, 

we also encounter priority compounds ((The Environmental Protection Agency has 
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identified approximately 129 priority pollutants. These pollutants were selected on 

the basis of their known or suspected carcinogenicity (cancer causing), 

teratogenicity (the production of malformations in an embryo or fetus), or high acute 

toxicity (poisonous)) of hazardous effects. Moreover, priority compounds can be 

highly persistent. Some organic priority compounds are for instance: halogenated 

dioxins/benzofurans/xanthenes from the incineration of halogenated phenols, 

polychlorinated biphenyls (PCB's) used as dielectric media, fire retardants, 

polycyclic aromatic hydrocarbons (benzene, nitrobenzene, p-dichlorobenzene, o-

phenylenediamine) used as precursors in organic synthesis, chlorinated aliphatics 

(chloroform, tetrachloromethane, trichloroethylene) applied as solvent and/or stain 

remover; pesticides (DDT, kepone, lindane) for crop protection and pest control; 

ammunition (TNT, picric acid, nitroanilines); monmers (acrylonitrile, vinylchloride, 

urethane) from the synthesis, processing and incomplete combustion of polymers, 

dyes (benzidine based) for colorization for e.g. textile, leather and polymers [1, 2]. 

Another big threat to water is caused by hazardous wastes. Both most 

advanced industrialized nations and underdeveloped countries are faced with a 

tremendous set of environmental problems related to the remediation of hazardous 

wastes. Problems with hazardous wastes at military installations are related in part 

to the disposal of chemical wastes in lagoons, underground storage tanks, and 

dump sites. As a consequence of these disposal practices, the surrounding soil and 

underlying groundwater aquifers have become contaminated with a variety of 
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hazardous chemicals. In the civilian sector, the elimination of toxic and hazardous 

chemical substances such as halogenated hydrocarbons from waste effluents and 

previously contaminated sites has become a major concern. More than 540 million 

metric tons of hazardous solid and liquid wastes are generated annually by more 

than 14000 installations in the United States. A significant fraction of these wastes 

are disposed on the land each year. Some of these wastes eventually contaminate 

groundwater and surface water. Groundwater contamination is likely to be the 

primary source of human contact with toxic chemicals emanating from more than 

70% of the hazardous waste sites in the United States [3]. General classes of 

compounds of concern include: solvents, volatile organics, chlorinated volatile 

organics, dioxins, dibenzofuran, pesticides, RGB's, chlorophenols, asbestos, heavy 

metals, and arsenic compounds. Some specific compounds of interest are 4-

chlorophenol, pentalchlorophenol, trichloroethylene (TCE), perchloroethylene (PCE), 

CCI4, HCCI3, CH2CI2, ethylene dibromide, vinyl chloride, ethylene dichloride, methyl 

chloroform, p-chlorobenzene, and hexachlorocyclopentadiene [3], 

In order to address this significant problem, extensive research is underway 

to develop advanced analytical, biochemical, and physicochemical methods for the 

characterization and elimination of hazardous chemical compounds from air, soil, 

and water. Although we left the ages of unprincipled operation long ago, we inherit 

innumerous highly polluted waste sites of former generations. Natural process or 

conventional microbiological degradation desperately needs the assistance of new 
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technologies, like for instance advanced oxidation processes (AOPs), to destruct 

hazardous persistent materials by chemical oxidation. Advanced physicochemical 

processes such as semiconductor photocatalysis are intended to be both 

supplementary and complementary to some of the more conventional approaches to 

the destruction or transformation of hazardous chemical wastes such as high 

temperature incineration, anaerobic digestion, and conventional physicochemical 

treatment. Treatment of contaminated surface water and groundwater as well as of 

wastewaters is part of a long-term strategy to improve the quality of our life by 

elimination of toxic material from drinking water resources and other sources of 

water for sustaining our necessities. 

Photochemical processes have emerged as valuable techniques for water 

purification. Fundamental and applied research on this subject has been performed 

extensively during the last 20 years all over the world. Direct photochemical 

processes require an artificial light source, high-pressure mercury or a xenon arc 

lamp, and a long time to decompose the organic compounds. In order to overcome 

these shortcomings, the combination of UV irradiation and other oxidizing agents 

were considered, which led to the development of Advanced Oxidation Processes 

(AOPs) [4], 

AOPs include thermal processes with H202 or ozone, UV/H202 photolysis, 

UV/ozone photolysis, the photo-Fenton process, semiconductor-based 

photocatalysis, sonolysis, radiolysis and indirect electrolysis, etc [5], The AOPs such 
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as UV/H202, UV/ozone, and photo-Fenton processes have already been proved 

useful to carry out the mineralization of organic compounds [4, 6, 7], The other 

AOPs, semiconductor-based photocatalysis, sonolysis, and radiolysis have also 

emerged as viable processes in recent years [3, 8-11]. 

Although extensive research is being performed on semiconductor-based 

photocatalysis, there are still many unsolved parts in the chemistries and 

mechanisms of semiconductor-based photocatalysis processes. The 

photodegradation reactions of organic pollutants may take place through the 

formation of harmful intermediates that are more toxic than the original compounds. 

Therefore, the identification of the intermediates is necessary in photocatalytic 

degradation process. This thesis contains study of degradation mechanisms of 

characteristic model organic contaminants in aqueous systems under photo

catalysis condition. It also covers modified photocatalysts to enhance the efficiency 

of destructing pollutant and the study of degradation mechanisms of model organic 

pollutants under modified photocatalysis systems. 

1.2. Dissertation Organization 

This dissertation is organized into five chapters. Chapter 1 is a general 

introduction based on a literature review on the Advanced Oxidation Processes 

(AOPs) and photocatalysis for organic contaminants in aqueous systems. The main 

emphasis is on the Ti02 mediated photocatalytic degradation of organic 
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contaminants in water. However, other major AOPs are discussed too. Chapter 2 

presents the degradation mechanism studies of an important intermediate from the 

photocatalytic degradation of aromatic organic contaminants. The challenge to 

degrade cyanuric acid, a recalcitrant species, by modifying the surface of Ti02 by 

fluoride is covered in chapter 3. The emphasis of chapter 4 is on isotope studies to 

clarify the unsettled mechanistic point from the degradation of organic phosphonate. 

Chapter 5 focuses on the modification of Ti02 to increase activity with an attempt to 

activate the modified Ti02 photocatalysts by visible light and decrease the rapid 

recombination. Following the last chapter is general conclusion. 

Chapter 2 presents the photocatalytic degradation of maleic acid in aqueous 

Ti02 suspensions. Maleic acid is one of major four carbon intermediates from the 

photocatalysis of 4-chlorophenol and other aromatic organic contaminants. The 

aliphatic intermediates most frequently encountered during the degradation of 

aromatic compounds are short-chain carboxylic diacids, as maleic, fumaric and 

oxalic acids, which have been detected during the mineralization of a variety of 

organic chemicals. Thus, the understanding of the mechanism of degradation of 

these compounds can assist us in ascertaining better conditions to perform the 

mineralization of persistent organic compounds. 

Chapter 3 discusses the photocatalytic degradation of a cyanuric acid, a 

recalcitrant species, in Ti02/F aqueous suspensions. The addition of fluoride to 

aqueous suspensions of titania has proved to be an important mechanistic tool in 

unraveling a long-standing conundrum in photocatalytic degradation. By using this 
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method in parallel with other methods for producing homogeneous hydroxyl-type 

reagents, it is shown that cyanuric acid is susceptible to degradation under easily 

accessible conditions. 

In chapter 4, there are isotope studies of photocatalysis of dimethyl phenyl 

phosphonate, a simple and safe form of organic phosphonate such as VX, a nerve 

gas. Because of the hazards associated with VX, Soman, and Sarin, most study has 

been done with model compounds, such as dimethyl methylphosphonate (DMMP). 

Exposure of DMMP and related simple phosphonates to Ti02-mediated 

photocatalytic conditions results first in the loss of one of the methyl esters. An 

important unsettled mechanistic point is the mechanism by which the methyl is 

removed [12, 13], The question is whether attack occurs at the methyl or at the 

phosphorus or both. Through the isotope studies of Ti02-mediated photocatalytic 

degradation of phosphonates, now we can well understand including removal of the 

alkyl ester portion of the compounds to produce phosphonic acid monoesters among 

the primary steps. 

Chapter 5 contains photocatalytic degradation of 4-methoxy resorcinol and 4-

chlororesorcinol by using composite semiconductor photo catalyst, W0x-Ti02. There 

has been recent interest in W03-coated DeGussa P25 Ti02 because it has higher 

activity than native material. With an attempt to activate the modified Ti02 

photocatalysts by the visible light and decrease the rapid recombination of excited 

electrons/holes during photoreaction, W0x-Ti02 powder was prepared by a sol-gel 



www.manaraa.com

8 

method. This method is distinct from the incipient wetness method, and grafting 

methods, which deposit the tungsten coating over the surface of P 25 DeGussa and 

other titania. The sol-gel method can provide a true composite semiconductor 

catalyst by binding the W to every possible site of titania. The modification of Ti02 by 

W shows its benefit of utilizing visible light for photocatalytic degradation of organic 

compounds. Differently prepared (incipient wetness method for P25 Degussa and 

PC 50 Millennium Chemical) W0x-Ti02 show similar effect of photo-activation by 

visible light. This is the first report that directly compared the photocatalytic 

degradation efficiency between W0x-Ti02 prepared by traditional incipient wetness 

method and W0x-Ti02 by sol-gel method. WOx-TiOs by sol-gel method consistently 

shows higher degradation efficiency (c.a. 20 %). It is difficult to explain thoroughly 

this result at this point because photocatalytic activity is affected by much more 

factors than simply particle size i.e., agglomerate size, crystallization condition, and 

surface property also affect to photocatalytic activity. One possible speculation for 

better photocatalytic activity of W0x-Ti02 by sol-gel method may due to less 

formation of aggregate by W0x-Ti02 from sol-gel method. Future work could refine 

the degradation efficiency precisely by controlling the particle sizes, defective sites 

of Ti02, agglomerate size etc. 
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1.3. Advanced Oxidation Processes (AOPs) 

Advanced oxidation Processes (AOPs) aim at the in-situ production of strong 

oxidizers. The oxidizing power is reflected by the standard reduction potential E° 

values. Table 1.1 shows some oxidizers in power order and E° values, expressed 

for reduction half-cell reactions [14, 15]. The potential is defined relative to the 

standard hydrogen electrode (SHE) potential. The Gibbs free energy change AG for 

the redox-reaction is calculated from the resulting electromotive force of both half-

cell reactions corrected for activity dependence (E), the number of electrons involved 

(n) and Faraday constant (F = 94685 C/mol); AG = -nFE 

The strongest oxidizers known are xenon fluoride (XeF) and possibly H4RnOe, 

but these oxidizers are not commercially attractive for water treatment because of 

both extreme reactivity and remaining toxicity in reduced form. Also, halogen-based 

oxidizers are not acceptable as oxidizer, because they halogenated organic 

materials for e.g. trihalomethanes that are very harmful compounds; in addition their 

reaction leads to salt formation. It is obvious that heavy metal-based oxidizers like 

permanganate (Mn04 ) and dichromate (Cr07
2") also are not desirable due to their 

toxicity. Of interest are thus oxygen-based halogen/heavy metal-free oxidizers like 

the hydroxyl radical (eOH), atomic oxygen (O), ozone (Oa) and hydrogen peroxide 

(H202) [2]. 
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Table 1.1 Standard reduction potential values for some oxidizers at T=298.15 K, for 

acidic conditions pH=0 applies [14, 15]. 

Reduction half-cell reaction E° (V) vs. SHE 

XeF + e- -> Xe + F" 3.40 

20F2 (g) + 4H+ + 4 e- -» 02 (g) + 4HF 3.29 

OH + H+ + e- ^ H20 2.56 

0 (g) + 2H+ + 2e- H2O 2.43 

Og + 2H+ + 2e- —*• 02 + H20 2.08 

H202 + 2H+ +2e- 2 H20 1.76 

HCI02 + 2H+ + 2e- — HCIO + H20 1.67 

H02 + H+ + e- * H?02 1.44 

Cl2 + 2e- -* 2 CI 1.40 



www.manaraa.com

11 

H20/UV process 

Hydroxyl radical can be generated in the photolysis of hydrogen peroxide 

process by the cleavage of the hydrogen peroxide molecule into hydroxyl radicals 

under the radiation (equation 1.1). 

hv 
H202 2HO • ^ ^ 

Hydroxyl radical can react with hydrogen peroxide to generate hydroperoxyl radical, 

which is also an oxidation reagent (equation 1.2). 

H2O2 + HO • H20 + HOO ^ 2) 

Hydrogen peroxide is also known to decompose to hydroxyl radical by a dismutation 

reaction with a maximum rate at the pH of its pKa value of 11.6 (equation 1.3) [16] 

HgOg + HCV H2O + O2 + HO* ^-| 0^ 

After the generation of hydroxyl radical, hydroxyl radicals can further react 

with organic substrates by hydrogen abstraction, electrophilic addition and electron 

transfer mechanisms. There is wide research on utilization of H202/UV oxidation 

process to remove the toxic organic pollutants [4, 17-20]. The advantage of this 

process includes that hydrogen peroxide is a cheap and easy to handle oxidant, 

infinitely miscible with water, and there are no separation requirements after the 

treatment of water. However, the absorption coefficient of hydrogen peroxide and 

quantum efficiency of hydroxyl radical production is very low at X>250 nm [4]. 
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Ozone/UV process 

The higher standard reduction potential of ozone (2.07 V at pH=1) makes 

ozone a powerful oxidant used for the degradation of organic pollutants in water [21, 

22]. Additionally, ozone/UV process generates HO radicals by the light-induced 

homolysis 03 and the subsequent by the interaction of O (1D) with water (equation 

1.4) [23]. 

03 hv<310 nm ^ Q 2  +  Q ( I D )  

0(1D) + H20 • HO* + HO* (1.4) 

A second explanation for the production of hydroxyl radical in photolysis of 

ozone dissolved in water involves the formation of H202 (equation 1.5). The 

resulting H202 is then a source of HO* radicals via a photohomolysis. The 

disadvantage of this ozone/UV process is the expensive production of ozone. 

O3 + H20 + hv< 310 nm —• H202 + 02 ^ ^ 

In the ozone/UV process [7, 8], hydroxyl radicals are produced from ozone, 

water and UV photons; high-pressure mercury or xenon lamps deliver the photons. 

Ozone is produced on location by ozonizer, which converts atmospheric or pure 

oxygen into ozone by corona discharges [9, 10]. These electrical discharges are 

separated by a dielectric material e.g. glass or ceramics at a thickness of about 0.5-

3nm. Commercial ozone generators are based on different electrode configurations, 

e.g. fluid-cooled shell & tube type generators for generation of large ozone amounts 
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and air-cooled plate type generators for small amounts. A cooling system is very 

important, to prevent decomposition of ozone. 

Photo-Fenton Reactions 

Fenton reagent Fe2+ is a well-known oxidant, generating the hydroxyl radical 

as the following equation (equation 1.6) [24]. 

Fe2+ + H202 • Fe3+ + HO" + HO* (1 .g) 

Fenton reagent has been applied for water and soil treatment. Furthermore it was 

found that a more effective system for oxidative degradation could be realized by 

applying near UV/Vis irradiation to the basic Fenton reaction (equation 1.7) [7, 25, 

26]. 

Fe2++ H20 + hv —• Fe3++ H+ + HO* (1 7) 

Usually, complete degradation can be realized in a short period during the photo-

Fenton process. However the iron salts constitute a pollution source and its removal 

is recommended. Since the reaction takes place at pH 2-3, neutralization is 

necessary to precipitate the dissolved iron as Fe (OH)3. 
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Sonolysis 

Sonochemical degradation methods are relative new and involve acoustic 

cavitations, the cyclical growth and collapse of gas bubble [27]. Propagation of an 

ultrasound wave in aqueous solution leads to the formation of cavitations bubbles. 

The cavitations process involves the oscillation of the radii of pre-existing gas 

cavities by periodically changing pressure field of the ultrasonic waves. The rapid 

implosion of the eventually unstable gas bubbles causes adiabatic heating of the 

bubble vapor phase. The collapse of these bubbles spawns extreme conditions on 

the microscopic scale such as very high temperatures and pressures, which in turn 

lead to the dissociation of H20 and the production of radical species such as HO, 

HOO, etc. These can be subsequently used for the transformation and/or 

destruction of organic substrates. Evidence has accumulated indicating that higher 

ultrasound frequencies at ~400 KHz are more favorable for the production of HO 

radicals [28]. The O'Shea group has used sonolysis to destruct the hazards 

orgaophosphorus compounds to C02, H20 and H3P04 [9, 13]. The generation of 

ultrasound energy can be performed by electrochemical (piezoelectric or 

magnetostrictive) or liquid-driven (liquid whistle = low intensity) tranceducers. 
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Radiolysis 

Radiolysis refers bond cleavage or any chemical process brought about by 

high-energy radiation [29]. The decay of radioactive nuclei (a, (3, y radiation), beam 

of accelerated charged particles (electrons, protons, deuterons, helium and heavier 

nuclei), and short-wavelength radiation (X or Bremsstrahlung radiation) are most 

commonly used as the types of radiation for the radiolysis process. 

Organic contaminants in aqueous solutions can be destroyed either by a "direct" or 

"indirect" interaction with the incident radiation. Because of the low concentration of 

organic contaminants in aqueous solution, the decomposition of organic contaminant 

takes place by "indirect" radiolysis, i.e. by interacting with the radicals eaq, H*, and 

HO* and the hydrogen peroxide generated by radiation-induce reaction with the 

water (equation 1.8) [30]: 

H20-^S+ [2.6] e"aq + [0.6] H- + [2.7]HO-
+ [0.7] H202 + [2.6] H30+ + [0.45] H2 (1.8) 

The number in brackets is the radiation chemical yield (G value) defined as the 

number of species generated per 100 eV absorbed energy or the approximate 

micromolar concentration per 10 J of absorbed energy [30]. 
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Semiconductor-based photocatalysis 

Semiconductor photocatalysis with a primary focus on Ti02 as a durable 

photocatalyst has been applied to a variety of problems of environmental interest in 

addition to water and air purification. It has been shown to be useful for destruction 

of microorganisms such as bacteria and viruses, for odor control, for the 

photosplitting of water to produce hydrogen gas, for the fixation of nitrogen, and for 

the clean up of oil spills. 

Semiconductors (e.g., Ti02, ZnO, Fe203, CdS and ZnS) can act as sensitizers 

for light-induced redox processes due to their electronic structure, which is 

characterized by filled valence band and an empty conduction band. When a photon 

with a energy of hv matches or exceeds the band gap energy, Eg, of the 

semiconductor, an electron, is promoted from the valence band, VB, into conduction 

band, CB, leaving a hole, hvb
+ behind. Excited state conduction-band electrons (e"ob) 

and valence-band holes can recombine and dissipate the input energy as heat, get 

trapped in meta-stable surface states, or react with electron donors and electron 

acceptors adsorbed on the semiconductor surface or within the surrounding 

electrical double layer of the charged particles. 

In the absence of suitable electron and hole scavengers, the stored energy is 

dissipated within few nanoseconds by recombination. If a suitable scavenger or 

surface defect site is available to trap the electron or hole, recombination is 

prevented and subsequent redox reaction may occur. The valence-band holes are 
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powerful oxidants (+1.0 to 3.5 V vs NHE depending on the semiconductor and pH), 

while the conduction-band electrons are good reductants (+0.5 to -1.5 V vs NHE). 

Most organic photodegradation reactions utilize the oxidizing power of the holes 

directly or indirectly; however, to prevent a buildup of charge one must also provide 

a reducible species to react with the electrons. In contrast, on bulk semiconductor 

electrodes only one species, either the hole or the electron, is available for reaction 

due to band bending. However, in very small semiconductors particle suspensions 

both species are present on the surface. Therefore, careful consideration of both 

the oxidative and the reductive paths is required [3]. 

Mineralization of organic pollutants in water and air steams to C02, H20 and 

inorganic ions can be realized by using certain semiconductors as photocatalyts [3-

5, 31-35]. There are a lot of different semiconducting materials which are readily 

available, but only a few are suitable for photodegradation of organic pollutants, 

such as W03, Ti02, SrTi03, CdSe, CdTe, ZnO, CdS and ZnS. In order to a 

semiconductor suitable for mineralizing organic waste products, the redox potential 

of the photogenerated valence band hole must be sufficient positive to generated 

absorbed HO* radical, and the redox potential of photogenerated conductance band 

electron must be sufficiently negative to be able to reduce adsorbed 02 to 

superoxide [36]. Of all the different semiconductor photocatalysts, Ti02 seems to be 

the most active [37]. In addition, Ti02 is a very cheap catalyst and can be recycled. 

Furthermore, the suspended photocatalyst Ti02 is stable to the photolysis conditions 
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and a large number of oxidative conversions per active site on the catalyst can be 

attained without significant degradation of the semiconductor's redox catalytic 

capacity. Thus, Ti02 photocatalysis is an active field of research and commercial 

interest. In the section 1.4, Ti02-based photolysis will be discussed in detail. 

Widely applied AOP comparison (adapted from ref. 1) 

Hydrogen peroxide/UV 

Pro: Hydrogen peroxide is a pure source of hydroxy I radicals. Activation can be 

applied by UV photons and/or iron (II, III) salts. The quantum yield for generation of 

hydroxyl radicals from photolysis of hydrogen peroxide is about 1.0. 

Contra: The transport, storage and handling of hydrogen peroxide require special 

safety precautions. Hydrogen peroxide shows only weak absorption in the range 

200-300 nm and also absorption at the wavelengths higher than 300 nm is not 

significant; by addition of iron salts the hydroxyl radical production efficiency is 

greatly enhanced, but a high iron salt concentration is required according to 

stoichiometry. The application of other salts than iron hydroxo/carboxyl chelate 

causes unnecessary release of anions like e.g. sulfate, chloride or nitrate. Lamp 

power efficiency and lamp life are limited. Turbid wastewater is problematic. 

Ozone/UV 

Pro: Ozone is powerful oxidizer that can be produced from a simple ozonizer setup 

and air. Also, hydrogen peroxide is produced from the oxidation of water by ozone. 
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Contra: The reactions of ozone in aqueous solution are mass transfer limited. 

Molecular ozone reacts much slowly than hydroxyl radicals. 

Unreacted/undecomposed ozone left in the reactor has to be detoxified e.g. by 

chemical reduction. The UV-lamp power efficiency and lamp life are limited; the 

penetration depth of UV radiation in turbid aqueous solution is low 

Sonolysis 

Pro: with a simple setup, vigorous conditions can be created in aqueous solution. 

Continuous flow operation is possible. 

Contra: A main issue is the fact that the scale-up procedure is complex. The 

shielding of ultrasound is important, because the intense first subharmonic of the 

applied driving frequency and white noise cause hearing impairment; also, potential 

hazard is the formation of aerosols from the harmful solution by surface wave 

activity. The transducer device undergoes erosion by intense cavitation. 

Photocatlysis 

Pro: Dirt cheap, nontoxic, robust, can be immobilized, absorbs some of the solar 

spectrum, extremely effective and versatile vis a vis substrates. A simple setup is 

required. 

Contra: The quantum yield for the generation for hydroxyl radicals on the surface of 

the most generally applied photocatalyst titanium dioxide is low. Indicated numbers 

are only 4-8% for titanium dioxide slurries or even lower for immobilized 
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photocatalyst particles. Also, the quantum yield is dependent on the light intensity. 

Mainly for these reasons, the scale-up procedure from laboratory setup to industrial 

application is problematic. Mass transfer limitation occurs for immobilized 

photocatalysts. After reaction, suspended photocatalyst particle have to be 

separated from the oxidation product mixture. UV-lamp power efficiency and lamp 

life are limited. Turbid wastewater is problematic. 

General Remarks 

It is sensible to state that one particular ideal AOR does not exist. The applicability 

depends on e.g. the nature of the target compound(s), the pollution magnitude and 

concentration, geographical location of the pollution and AOR performance stability. 

With regard to high quantities, continuous-flow operation is preferable to bath-wise 

processing. Treatment of low concentration intermediate toxic waste flow should be 

performed with maximum efficiency. 

1.4. Semiconductor photocatalysis 

Ti02 is considered a promising photodegradation catalysis because it posses 

five basic characteristics: 1) photoactive, 2) able to utilize visible and/or near UV-

light, 3) biologically and chemically inert, 4) photo-stable, and 5) inexpensive [38]. In 

order to improve the reproducibility of the results between groups, many have 
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chosen to use a particular source of Ti02, Degussa P25, produced through the high 

temperature (greater than 1200 °C) flame hydrolysis of TiCI4 in the presence of 

hydrogen and oxygen, which continue to be treated with steam to remove HCI. The 

two crystal structures of Ti02 utilized in photocatalysis are rutile and anatase. 

DeGussa P25 is approximately 70% anatase and 30% rutile. This brand Ti02 was 

used in this study. In order to have the insight of the Ti02 photodegradation, the 

initial events of Ti02 photocatalytic system are going to be discussed first. 

Chemical mechanism of initial steps [3] 

Typical photodegradation is performed with oxygen or air saturated aqueous 

suspensions of Ti02 (Degussa P25). The energy bandgaps of anatase is 3.23 eV 

(384 nm) and rutile is 3.02 eV (411 nm) [39]. The band gap of DeGussa P25is 

roughly 3.2 eV [40]. When ultraviolet radiation equaling or exceeding the energy of 

the bandgap (<400 nm) is absorbed, an electron is promoted from the valence band 

to the conduction band leaving an electron hole (hVB
+) in the valence band. This 

process is shown in equation 1.9 of Figure 1.1. Adsorbed water on the surface of 

Ti02 can continue to react with the hole to generate the hydroxyl radical shown in 

equation 1.10 of Figure 1.1. This process is the main mode for adsorbed hydroxyl 

radical formation. Hydroxyl radicals are believed to be the main oxidation reagents 

from Ti02 and it is supposed that the reactions take place on the Ti02 surface, but 

electron transfer is another important mechanism [8, 41-49], Photocatalytic 
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degradations are carried out in aqueous solution and with oxygen. The main role of 

oxygen is an electron consumer reacting with a conduction band electron to form 

superoxide as seen in equation 1.11 of Figure 1.1 and preventing electron-hole 

recombination, and another main role of oxygen is as the oxidant [50]. Hydrogen 

peroxide may then undergo fragmentation to a hydroxyl radical and a hydroxide 

anion, as seen in equation 1.14 of Figure 1.1. 

It has also been reported that organic molecules may interact directly with an 

electron in the conduction band or an electron hole in the valence band. These 

steps are represented in equation 1.15 and 1.16 of Figure 1.1. The symbol A 

represents a general electron acceptor molecule while D signifies an electron donor 

molecule. Of course, there exists an important charge and hole recombination 

reaction in the initial steps. 

Ti02 + hv — * ® cb + h\b (1.9) 

^2^ads + h+
vb — " HO*ads + H+ (1.10) 

02 + ® cb 

i CM 0
 

1
 (1.11) 

I CM o
 + H+ 

•
 CM o
 

X
 t (1.12) 

2H02* * H202 + o2 (1-13) 

H2O2 + ® cb — HO* + HO" (1.14) 

A + e cb — AE" (1.15) 

D + h+vb — D*+ (1-16) 

Figure 1.1. Reactions at Ti02 surface 
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Debate on the oxidizing species 

In aqueous solution, two main oxidizing species are considered involving Ti02 

photocatalytic degradation process: the hydroxyl radical or the irradiation-induced 

hole. There exists a significant body of literature that oxidation may occur by either 

indirect oxidation via the surface-bound hydroxyl radical or directly via valence-band 

hole before it is trapped either within the particle or at the particle surface [8, 41-49]. 

The results of detailed laser flash photolysis experiments have obtained the 

characteristic time scales of the processes associated with the reaction mechanism 

[3], The charge-carrier generation (equation 1.9 in Figure 1.1) occurs on the 

femtosecond time scale. Charge carrier trapping (equation 1.10 in Figure 1.1) is at 

picosecond to nanosecond time scale. The charge-carrier recombination is on the 

picosecond to nanosecond time scale, while the direct oxidation (equation 1.16 in 

Figure 1.1) is on microsecond to millisecond time scale. Direction oxidation 

competes with two other processes, charge-carrier recombination and trapping. In 

the general mechanism and from the time scale, it is assumed that the substrate 

does not undergo direct hole transfer and that oxidative electron transfer occurs 

exclusively through a surface-bound hydroxyl radical or equivalent trapped hole 

species. 

Hydroxyl radical as the principal reactive oxidant in photoactivated Ti02 is 

supported by the observation of the hydroxylated structure intermediates during the 

photocatalytic degradation of aromatic compounds. When those compounds react 
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with a known source of hydroxyl radicals, similar intermediates are generated as 

those during the photocatalytic degradation. For example, Li et al. studied the 

decomposition of anisole by using photoactivated Ti02 system, direct H202/UV 

system and Fenton system [51]. The intermediates distribution observed in the 

different systems are similar and the para- and the ortho-hydroxyl anisole are the 

main intermediates. This phenomenon shows that during primary photodegradation 

of anisole the hydroxyl radical is very possible the main oxidation reagent. . In 

addition, ESR studies and indirect kinetic evidence have verified the existence of 

hydroxyl and hydroperoxyl radicals in aqueous solutions of illuminated Ti02 [52, 53]. 

On the other hand, Li et al. suggested that the ring-opening on Ti02 

photocatalytic degradation of 4-chlorophenol is induced by direct single electron 

transfer, rather than hydroxyl radical reaction [54, 55]. Mao et al. have observed that 

trichloroacetic acid and oxalic acid are oxidized primarily by valence-band holed on 

Ti02 via a photo-Kolbe process [56]. Likewise, Draper and Fox were unable to find 

evidence of any hydroxyl radical adducts for the Ti02-sensitized reaction of 

potassium iodide, etc [44]. They observed only the products of the direct electron-

transfer oxidation. Carraway et al. have provided experimental evidence for the 

direct hole oxidation of tightly bound electron donors such as formate, acetate, and 

glyoxylate at the semiconductor surface [57]. 

Richard has argued that both holes and hydroxyl radicals are involved in the 

photooxidation of 4-hydroxylbenzyl alcohol (HBA) on ZnO or Ti02 [58]. His results 
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suggest positive holes and hydroxyl radicals have different regioselectivities in the 

phtocatalytic tansformation of HBA. Hydroquinone (HQ) is thought to result mainly 

from the direct oxidation of HBA by hvb
+, dihydroxybenzyl alcohol (DHBA) mainly 

from the reaction with hydroxyl radical, while 4-hydroxybenzaldehyde (HBZ) is 

produced by both pathways. In the presence of isopropyl alcohol, which is used as 

a hydroxyl radical quencher, the formation of DHBA is completely inhibited and the 

formation of HBZ is inhibited. 

Kinetic view 

In general, the kinetics of Ti02 photomineralization of organic substrates in the 

presence of oxygen and under steady state illumination fit a Langmuir-Hinshelwood 

kinetic scheme. The Langmuir-Hinshelwood model suggests that the organic 

reagent is pre-adsorbed on the photocatalyst surface prior to UV illumination. The 

rate of degradation is proportional to the surface coverage (0) (equation 1.16) [53]. 

Rate = k 0 (1.16) 

After insert the formulation of 0, the above equation can be converted into the 

common Langmuir-Hinshelwood kinetic model (equation 1.17). 

dC ^ kobsKLC 

dt {K lC+ 1) (1.17) 

Where kobs is an apparent reaction rate constant, and KL is the Langmuir 

constant reflecting the adsorption/desorption equilibrium between the reagent and 
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the surface of the photocatalyst. There are two extreme cases. For high 

concentration of the pollutant, where saturation coverage of the surface is achieved 

(i.e. KLC»1), the equation can be simplified to a zero-order rate equation (equation 

1.18). 

dC 

dt k°bs (1.18) 

For the low concentration (KLC«1), the equation can be simplified to a 

pseudo-first-order kinetic equation (equation 1.19). 

= kobsKLC 
dt (1.19) 

The solvent and reaction intermediates compete with the reacting substrate 

for the active surface, thus the Langmuir-Hinshelwood kinetic model can be 

characterized by equation (equation 1.20): 

dC kobsKLC 

dt ~ (K LC + 2/<C, + 1) (1.20) 

When the concentration of the reacting substrate is high, this equation can be 

similarly transferred into the zero-order equation. 

When the concentration of the reacting substrate is low, the Langmuir-

Hinshelwood equation into its inverse function results in a linear relationship with an 

intercept of kobs~1 and a slope of (kobs"1K"1) (equation 1.21). 

dt 1 1 
+ 

dC kob5 kobsKLC (1.21) 
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The process, in which a surface-generated catalytic species diffuses to the 

bulk solution where the primary catalytic conversion occurs can also be described by 

an Eley-Ridel pathway [59]. It was shown by Turchi and Ollis that the rate of photo-

oxidation of an organic substrate on irradiated Ti02 presents the same kinetic 

behavior as L-H kinetic model [53]. Unfortunately, an experimental distinction 

between Langmuir-Hinshelwood kinetic model and Eley-Ridel pathway, based on 

kinetics alone, is not possible because of the kinetic ambiguities [60, 61]. 

The kinetic expression can be same irrespective of (1) the oxidizing 

species and the substrate are both adsorbed, (2) both species are in solution, (3) the 

oxidizing species is adsorbed and the substrate is in solution, or (4) the substrate is 

adsorbed and the oxidant is in solution. 

Effects on the Ti02 photocatalytic degradation process 

Adsorption effect 

It has been suggested that preliminary adsorption is a prerequisite for highly 

efficient detoxification [62]. Because recombination of the photogenerated electron 

and hole is so rapid, interfacial electron transfer is kinetically competitive only when 

the relevant donor or acceptor is preadsorbed before photolysis. The correlation 

between degradation rates and concentration of the organic pollutant adsorbed to 



www.manaraa.com

28 

surface is reported often [63-65]. However, dark adsorption properties do not 

always correlate with reactivity [66]. 

Our group studied the photodegradation of 4-chlorophenol [54, 55]. The 

interesting result is that the ring is opened easily until there is two hydroxyl groups 

are in the ortho position on the phenyl ring. This result may be explained in that two 

ortho hydroxyl groups can anchor the substrate on Ti02 surface. Then, the 

substrate can react with a hole to generate the radical species further reacting with 

the superoxide to occur the ring opening. Isopropanyl alcohol was used as the 

competitive absorption materials that can compete with the weak absorbed species 

on Ti02 [67]. When there are more methoxy groups on the ring, the rate inhibition 

effects of isopropanol are more obvious, while more hydroxyl group substitutes on 

benzene ring, the effect of isopropanol is less obvious. 

Effect of pH 

The particle size, surface charge and band edge positions of Ti02 are strongly 

influenced by pH. The isoelectric point for Ti02 in water is about pH=6.6 [68], and 

positive surface charge is expected at lower pH and negative surface charge is 

predicted at higher pH values. This surface charge is due to protonation or 

deprotonation of the surface HO groups. A second charge layers is formed in the 

electrolyte near the interface to the surface charge. For negative charges 

accumulate at the interface of n-type semiconductor (semiconductor in which 
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concentration of electrons is much higher then concentration of holes; electrons are 

majority carriers and dominate conductivity). The space charge layer formed is a 

depletion layer and the bands bend upward toward the surface. Thus, the 

concentration of holes on the surface is larger than electrons. The higher 

concentration of holes may react with a high concentration of HO- on the surface. 

Therefore, increased surface density of OH adsorbed thereon [8]. Therefore, a 

higher concentration of hydroxyl radical is produced by the neutralization of 

adsorbed OH ion by photogenerated holes. However, it was found out that the 

change in the rate of photocatalytic degradation rate is generally less than one order 

of magnitude from pH 2 to pH 12 [69-72]. 

Effect of the amount of Ti02 

Usually, the rate of reaction is almost linearly dependent on the increased 

concentration of Ti02 [73, 74]. This behavior is consistent with the complete 

absorption of light near the surface of the semiconductor [73, 74]. In some cases, 

with the increased concentration of Ti02, the rate of degradation increases up to a 

certain point, then, begins to decrease slowly [75, 76]. The reason is that when the 

amount of Ti02 increase, there are more active sites for the reaction, thus the 

reaction rate increases. When the amount of Ti02 is more than the optimum 

concentration, the aggregation of Ti02 becomes a serious problem and the reaction 

rate slows. The increase in opacity and light scattering by the particles may be the 
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other reasons for the decrease of the rate. In a commercial system, Ti02 can be 

fixed on Nation film, ceramic film, silica gel, and glass surface. 

Effect of the concentration of the substrate 

As discussed earlier in the section 1.4.4, the concentration of organic 

substrate affects the kinetic rate of the degradation. It is also clear that the kinetics of 

photodegradation will depend on the ease with which the substrate can be oxidized 

and how well it absorbs and how well its products absorb on the surface Ti02. For 

most of organic pollutants tested, the relationship of degradation rate and the 

concentration of pollutants comply with Langmuir-Hinshelwood kinetic model [55, 

67]. However, this is not always true: San et al found the decrease of initial 

degradation rate with the increase of the initial concentration of pollutant due to 

strong absorption of the products [76]. It is also worth noting that the absorption 

spectrum of the pollutant can drastically affect the kinetics of photocatalysis. In 

particular, if the pollutant is a strong UV absorber, then, as its concentration is 

increased it will eventually begin significantly to screen the Ti02 from the 

ultra-bandgap light and the kinetic of the light will be affected. 

Effect of the concentration of the oxygen 

Since oxygen is the electron consumer inhibiting the recombination of the 

electron/hole pair the concentration of dissolved oxygen in solution also affect the 
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degradation rate. It is found that the rate degradation is proportional to the fraction 

of 02 (equation 1.14) [36]. 

Rate . 
1 + KO2[ 02] (1.14) 

Where K0i is the Langmuir adsorption coefficient for 02. 

Effect of reaction temperature 

Photochemical reactions are often not very temperature sensitive. The 

reactant is converted into product through an excited state surface funnel crossing 

an excited-state surface to ground-state surface [77]. The overall process of Ti02 

photo-degradation is only slightly temperature sensitive. The activation energies of 

photo-catalytic degradation reactions usually have the values of 5 -16 kJ mol"1 [36], 

because the photocatalytic degradation process involves potentially temperature-

dependent steps, such as adsorption, desorption, surface migration, and 

rearrangement. In principle, it is possible to sort the temperature dependence into 

(1) adsorption contribution (by alteration of the Langmuir adsorption isotherm), (2) 

stabilization of intermediates (by alteration of kinetics for formation or decay of 

different transients), and environmental effects (by alteration of solvent, electrolytes, 

etc.) [78]. 



www.manaraa.com

32 

Application of Ti02 photocatalysis 

The semiconductor-sensitized photomineralization of organic substrate by 

oxygen can be summarized as follows (equation 1.15). 

Ti02 

Organic pollutant + 02 ** C02 + H20 + Mineral acid 
h v a E »= (1 .15)  

The degradation of a variety of organic molecules has been investigated. For an 

exhaustive review of these publications please refer to Hoffman [3] and Mills [38]. 

The various examples of photo-mineralization of organic pollutants by Ti02 was 

summarized in Table 1. The research related to degradation of organic compounds 

by photocatalysis and or AOPs progressed very fast. Mills suggests that it is 

necessary to define a standard test system [36]. 4-Chlorophenol has become a 

standard for evaluating various experimental parameters [11, 54, 55, 61, 79-94], 

Table"!. 2 Photomineralization of organic pollutants by Ti02: Examples of 

compounds studied [31] 

Class Examples 

Alkanes methane; isobutane; pentane; isooctane; heptane; n-dodecane; 

cyclohexane; methylcyclohexane; 1,4-methylcyclohexane; 

paraffin 

Haloalkanes mono-,di-, tri-, and tetra-chloromethane; fluorotrichloromethane; 
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1,1-and 1,2-dichloroethane; tetrachloroethane, 

pentachloroethane; dibromoethane; tribromoethane; 1,2-

dichloropropane; 1-bromododecane; 1,1 -difluoro-1,2-

dichloroethane;1,1 -difluoro-1,2,2-trichloroethane; 

Aliphatic methanol; ethanol; /'sopropyl alcohol; cyclobutanol; n-propyl 

alcohols alcohol; propan-2-ol; butanol; penta-1,4-diol; 2-elloxyethanol; 2-

butoxylethanol; dodecanol; benzyl alcohol; glucose; sucrose 

Aliphatic formic; ethanoic; dimethylethanoic; mono-, di-, and tri

carboxylic chloroethanoic; propanoic; butanoic; dodecanoic; oxalic 

acid 

Alkenes Propene; cyclohexene 

Haloalkenes perchloroethene; 1,2-dichloroethene; 1,1,1- and 1,1,2-

trichloroethene; tetrachloroethene; mono-, di-, and tetra-

fluoroethene; hexafluoropropene 

Aromatics Benzene; naphthalene 

Haloaromatics chlorobenzene; bromobenzene; 2,3,4-chlorophenol; 2,4- and 3,4-

dichlorophenol; 2,4,5- and 2,4,6-trichlorophenol; 

pentachlorophenol; 2,3-, and 4-fluorophenol; 2,4- and 3,4-

dichloronitrobenzene; 1,2-dichlornitrobenzene 

Phenol phenol; hydroquinone; methylhydroquinone; catechol; 4-methyl 
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catechol; 4-nitrocatechol; resorcinol; 2-naphthol; o-, m-, and p-

cresol 

Aromatic benzoic; 4-amino benzoic; 3-chloro-4-hydroxylbenzoic; phthalic; 

carboxylic salicyclic; m-, and p-hydroxybenzoic; 3-chlorohydroxylbenzoic 

acid 

polymers polyethylene; PVC 

surfactants SDS; p-nonyl phenyl polyoxyetheylene ether; polyethylene glycol; 

p-nonyl phenyl ether; sodium dodecyl benzene sulfonate; benzyl 

dodecyl dimethyl ammonium chloride; p-nonyl phenyl 

poly(oxyethylene)esters; sodium benzene sulfonate; paraxon; 

malathion; 4-nitrophenyl ethyl phosphinate; 4-nitrophenyl 

isopropyl phosphinate; 1-hydroxy ethane-1,1 -diphosphonate; 4-

nitrophenyl diethyl phosphate; trimethyl phosphate; trimethyl 

phosphite; dimethyl ammonium phosphodithionate; tetrabutyl 

ammonium phosphate 

Herbicides methyl viologen; atrazine; simazine; prometon; propetryne; 

bentazon 

pesticides DDT; parthion; lindane 

Dyes methylene blue; rhodamine B; methyl orange; fluorescerin; 

umbelliferone 
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Modified Ti02 based photocatalysts 

Ti02 has been shown to be an excellent photocatalyst for the degradation of 

organic contaminants in water and air. Nearly every organic molecule ever tested 

(as introduced in Table 1. 2) was degraded to C02, H20, and appropriate inorganic 

ions when exposed to Ti02-mediated photocatalytic degradation conditions in 

oxygenated water. However, it has two typical limitations. Firstly, Ti02 is a wide 

band gap (3.2 eV) semiconductor that can be excited by high energy UV irradiation 

(with a wavelength of 385 nm for anatase and 410 nm for rutile). This allows only no 

more than 5 % of sunlight can be utilized for photocatalytic degradation. Secondly, a 

low rate of electron transfer to oxygen and a high rate of recombination between 

excited electron/hole pair results in a limited photocatalytic degradation [95-97], 

Semiconductor-metal composite nanoparticles facilitate charge rectification 

(i.e. directing the flow of electrons and holes in opposite directions) and improve the 

photocatalytic efficiency in the system [98]. Accumulation of electrons on the Ti02 

and acceleration of the radiationless electron-hole recombination due to insufficient 

02 reduction (scavenging electron) exhibit relatively poor photocatalytic efficiency. 

Application of transition metals as co-catalyst can improve the efficiency of the 

photocatalysis; the noble metal, which acts as a sink for photo-induced charge 

carriers, promotes interfacial charge-transfer processes. Modified photo-catalyst 

systems not only rectify the flow of photo-generated charge carriers [99-101] but 
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also extend the photo-response of large band-gap semiconductors [95] and improve 

the efficiency of dye sensitization [101, 102]. 

In this study, W0x-Ti02 samples were prepared by a sol-gel process with the 

aims of extending the light absorption spectrum toward the visible region, and 

hindering the recombination of electron/hole pairs [95]. We are particularly interested 

in a recent report by Li et al. that describe the preparation and characterization of 

WOx-dispersed Ti02 by the sol-gel method [95]. These catalysts have relatively 

featureless absorption spectra that extend well into the visible, potentially making 

them extremely valuable photocatalysts because they will absorb a greater fraction 

of sunlight. Its photocatalytic effectiveness was tested by measuring the 

disappearance of methylene blue under visible light irradiation [95]. They proposed 

that tungsten oxides doping into Ti02 could shift the light absorption band from near 

UV range to visible range. This could also hinder the fast recombination rate of 

excited electrons/holes. Hence, we tried to prepare some of this material and 

assess it with more typical substrates, especially our standard probes, to understand 

if the same general mechanism will apply for organic degradation, despite the 

narrower band gap. Probes such as 4-methoxyresorcinol should be good indicators 

for the types of chemistry occurring at modified or alternative photocatalysts. Our 

previous experiments with 4-methoxyresorcinol have been carried out with DeGussa 

P25 Ti02 [67], 
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Chapter 2 

Mechanisms of Catalyst Action in the Ti02-mediated 

Photocatalytic Degradation of Maleic and Fumaric Acid 

A paper submitted to Applied Catalysis B: Environmental 

Youn-Chul Oh, Xiaojing Li, Jerry W. Cubbage, and William S. Jenks* 

Abstract 

The partial photocatalytic degradation of maleic acid has been investigated with 

the purpose of elucidating the mechanism of catalyst action for some of the early 

transformations. In particular, it is proposed that the photocatalytically induced cis-trans 

isomerization of maleic acid and fumaric acid is initiated by adsorption-dependent 

reductive electron transfer. An investigation into the involvement of superoxide in the 

oxygenation reactions observed near neutral and higher pH clearly demonstrates that 

superoxide does not initiate the chemistry. 
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2. 1. Introduction 

Semiconductor-mediated photocatalytic degradation of organic pollutants in water 

is a well-documented phenomenon that has found extreme generality with regard to 

substrate, particularly with Ti02 photocatalysts [1-9]. Among the most important classes 

of compounds from a chemical perspective is the group containing aromatic rings, which 

includes various phenolic pollutants, PCBs, and many herbicides and pesticides. Over 

the last few years, an area that has received much greater attention in the study of these 

pollutants is the array of chemical pathways by which compounds are degraded, and 

the related issue of the mechanisms by which the chemical transformations take place. 

It is widely understood that the great majority of chemical steps are oxidative in 

nature, usually involving hydroxy I radical-like chemistry or oxidative electron transfer. In 

other instances, overall or transient reductive steps are observed, for example in the 

reduction of azo dyes [10-15], electron poor aromatics [16-18], or quinones [19-25]. 

Such reductions are counterintuitive, since photocatalytic reduction is widely perceived 

as oxidative. In fact, in many mechanistic discussions of degradations of large organic 

molecules, a key issue is the competition between processes represented in equations 

2, 3, and 4, i.e., whether oxidation occurs by way of hydroxyl type chemistry or direct 

oxidative electron transfer. However, electron transfer to an organic substrate (eq 8) can 

be pictured as competing with the usual reductive electron transfer to molecular oxygen 

(eq 5). 

H2°ads + h+
vb *OHads + H+ 

02 + e'cb 

Ti02 + hv -» h+
vb + e"cb 

M + h+
vb — M + 

O. 

OHads + H+ 

(1) 

(2) 

(3) 

(4) 

(5) 
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02 • + H -> HO2 (6) 

2H02- -> H202 + 02 (7) 

M + h+
vb -* M'1 (8) 

In this paper, we examine the early transformations related to the degradation of 

maleic and fumaric acid under conditions of Ti02-mediated photocatalytic degradation. 

These compounds are ubiquitous in the degradation of aromatic compounds [24-32]. 

Among the earliest studies of carboxylic acids is Bard's report on the degradation of 

benzoic acid in aqueous media using platinized Ti02 [33]. Hydroxylation of the aromatic 

ring to give salicylic acid and decarboxylation with oxidation to give phenol (presumably 

after subsequent reaction of Ph* with 02) were the observed primary transformations. 

Subsequent studies focused on the regiochemistry of hydroxylation of benzoic acid and 

various halogenated derivatives [34,35]. Some evidence for loss of C02 by ipso 

attack was reported, and it was found that hydroxylation was not competitive with 

decarboxylation of C02 in chlorobenzoic acids. With aromatic polycarboxylic acids, 

both hydroxylation and decarboxylation are reported as primary reaction pathways 

There are also several publications reporting the degradation of various simple 

alky I carboxylic acids. Again following early work by the Bard group, subsequent 

workers reported that there is a significant pH dependence on the balance between H2 

and CH4 evolution from acetic acid and that longer chain acids (e.g., butyric acid) gave 

evidence for non-Kolbe pathways apparently initiated by hydrogen abstraction from the 

alky I groups [37,38]. Production of chloride was also noted for chloroacetic acid 

derivatives [38]. Several relevant facts emerge from a recent study of the degradation 

of butyric acid [39]. The equilibrium concentration of butyric acid in aqueous solution is 

higher at pH values above the acid dissociation constant, implying that adsorption is 

[36]. 
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stronger for the protonated acid. Nonetheless, the observed rate of degradation was 

higher at pH 6.9 than that at pH 3.6. Observed product distributions varied, but this 

was attributed mainly to the different distributions of species available to react after 

radical formation. Again, the interpretation was based on a competition between hole 

oxidation to give the decarboxylation and chemistry initiated by hydrogen abstraction 

done by hydroxy I radicals. Similar competitive chemistry was observed for the more 

functionalized hydroxybutanedioic acid (malic acid) [40]. 

2,4-Dichlorophenoxyacetic acid (also known as the herbicide 2,4-0) and closely 

related compounds have received special attention because of their direct 

environmental relevance [41-45]. Following the pattern outlined above, the main initial 

product detected (2,4-dichlorophenol) derives from decarboxylation, but some studies 

also report competitive formation of arene-hydroxylated species under some 

conditions. The most detailed mechanistic work of these was interpreted in terms of a 

competition between direct hole oxidation and hydroxy I radical chemistry [41]. At low 

pH (where we may infer that the adsorption binding constant is higher), it is asserted that 

direct oxidation by holes predominates, whereas hydroxyl-type chemistry 

predominates in neutral and basic solution. A purely radical mechanism based on 

competition between surface-bound and bulk solution chemistry was rejected on the 

basis of experiments using solution-phase hydroxy! radical scavengers. 

The most relevant study to the present work is a paper by Franch et al. in which 

the degradation of oxalic, fumaric, and maleic acids is reported [46]. Adsorption 

isotherms indicate that approximately three times more maleic or fumaric acid is bound 

to Ti02 at pH 3 than at pH 9. Like the butyric acid case, the initial degradation rate is 

modestly higher at the higher pH, despite the poorer adsorption. On this basis, they 

conclude that degradation occurs in the homogeneous phase at high pH by means of 

solvated hydroxyl radicals. Franch et al. also report a change in product distribution with 
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pH. At pH 3, intermediate build-up is reported. The fastest process is cis-trans 

isomerization, which is attributed to interaction between the acids and photogenerated 

holes. Aside from this, the major product is reported to be acrylic acid (CH2=CH-

C 02H), attributed to photo-Kolbe chemistry. A small amount of photohydration to malic 

acid is reported as well. Downstream intermediates include acetic, oxalic, and formic 

acids. This is summarized in Scheme 1. At pH 9, very little intermediate build-up is 

reported aside from oxalic acid, implying that the first chemical step is slower than 

subsequent oxidations. In a related study of the degradation of malic acid [40], maleic 

and fumaric acid are reported as observed intermediates, implying that photoinduced 

dehydration may occur, as well as photoinduced hydration. However, this study did not 

single out maleic/fumaric acid as a starting point for further degradations, and pathways 

beginning from there are thus speculative. 

Scheme 1. Summary of pathways proposed by Franch et al. for photocatalytic 

degradation of maleic or fumaric acid at pH 3 in Ti02 slurries [46]. 

HO2C CO2H 

maleic acid 

H02C 
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In this paper, we report an investigation of the degradation of maleic and fumaric 

acids that begins in a manner parallel to the work of Franch. Many, but not all, of our 

product observations are in agreement with the previous work. We report a series of 

experiments designed to elucidate more clearly the mode of molecule-catalyst 

interaction that leads to various processes, including especially tartaric acid formation and 

the cis-trans isomerization. 

2. 2 Experimental Section 

Materials. 

All reagents were purchased from Aldrich and used without further purification 

unless otherwise indicated. Tartronic acid and Superoxide dismutase (SOD, from 

bovine erythrocytes, 3000 units in 0.8 mg) were purchased from Sigma. The water 

employed was purified by Milli-Q UV plus system (Millipore) resulting in a resistivity 

more than 18 MQ cm™1. Ti02 was Degussa P-25. The epoxides of sodium fumarate 

and sodium maleate were prepared by stereospecific epoxidation by the method of 

Payne [47]. 1H NMR (D20) d 3.61 (c/s); 3.32 (trans). Dihydroxyfumaric acid dimethyl 

ester was prepared by a reported method [48]. 

Standard degradation conditions 

Except as noted, degradations followed these standard conditions. A 100 mL 

aqueous solution containing 2.0 mM starting material (usually maleic acid) and 50 mg 

suspended Ti02 was prepared. The pH of solution was adjusted by HCI (pH 2), 

phosphate buffer (10 mM, pH 7.0), or NaOH (pH 12). The mixture was treated in an 

ultrasonic bath for 5 minutes to disperse larger aggregates and purged with 02 for 20 

minutes in the dark before the irradiation was started. The mixture was continuously 
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purged with 02 throughout the experiment. Irradiations were carried out with stirring and 

a fan that kept the temperature at ambient levels in a Bayonet mini-photochemical 

reactor equipped with eight 4 W "black light" which have a broad emission spectrum 

centered at 360 nm. After reaction, the mixtures were acidified, centrifuged, and filtered 

to remove Ti02. Water was removed by freeze-drying. Adipic acid as an internal 

standard was added after photoreaction as necessary. 

General analytical methods 

Following the removal of water, the intermediate degradation products were 

identified and quantified as their trimethylsilyl (TMS) derivatives, using GC-MS 

procedures reported in our earlier work [24]. Some analyses were carried out after 

reduction of the reaction mixture with NaBH4 or NaBD4 [24]. The instrument was a 

Varian 3400CX GC equipped with a 30 m DB-5 column, coupled to a Finnigan 

Magnum ion trap mass spectrometer. The temperature program was 120 °C for four 

min, followed by a ramp to 200 °C at 5 °C/min, then ramp at 15 °C/min to 280 °C. An 

HP 5890 gas chromatograph with FID detection was also used for routine quantification. 

Some analyses, were carried out after reduction of the reaction mixture with NaBH4 or 

NaBD4 [24], as noted in the text. 

Miscellaneous experimental conditions 

Superoxide experiments. Potassium superoxide (K02) is slightly soluble in dry 

dimethyl sulfoxide (DMSO). Using the method of Valentine [49], 0.15 M solutions of 

K02 were prepared in the presence of 0.30 M 1 B-crown-6 [50]. Maintenance of the 

characteristic pale yellow color of these solutions was taken as evidence that the 

superoxide remained. Reactions using either pyridine or DMSO as the solvent for 

maleic acid were carried out with K02:maleic acid ratios of 1:1, 5:1, 5:1 in the presence of 
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1 % water added, and 1000:1. The following example is representative of the reaction 

conditions. To a solution of maleic acid (100 ml_, 2 mM in DMSO), the K02 solution (50 

ml_) was added dropwise over the course of 1 h. The solvent was evaporated under 

vacuum and the residual material was silylated as usual and analyzed by GC-MS. No 

degradation of maleic acid nor any new organic compounds were observed. 

Superoxide Dismutase (SOD) Experiments. The method of Pichat [27,51-53] 

was closely followed, and some of his experiments were duplicated as positive 

controls, as our results were universally negative, i.e., there was little or no effect of 

adding SOD. In the relevant experiments, maleic acid (39 mmol) and TiOz (25 mg) 

were dispersed in 50 ml_ water buffered at pH 7 with the buffer supplied with the 

enzyme by Sigma. After ultrasonic treatment and 02 purging as usual, 1500 units of 

SOD was introduced. The mixture was irradiated in the usual fashion for 40 min, 

followed by the usual workup and analysis. 

Fluoride experiments. These degradation reactions, workup, and analyses were 

carried out in the standard fashion, with the following exceptions: Sufficient NaF was 

added to raise the concentration of the solution to 20 mM before addition of the Ti02. 

The pH of the slurry was adjusted to 3 to maximize surface coverage by fluoride ions 

[54,55]. 

2. 3. Results and Discussion 

Product mixtures and exploratory degradations 

Photocatalytic degradations of maleic acid (1) were carried out at pH 2, 7, and 12 

using the light from broadly emitting fluorescent tubes centered at 360 nm. The 

solutions initially contained 2.0 mM maleic acid and 50 mg TiOa in 100 ml_ 02-saturated 

water. Control experiments showed that no degradation occurred in the absence of 

Ti02 or irradiation. Experiments carried out in the absence of 02 are described in more 
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detail below, but oxidative transformations were curtailed, compared to the ordinary 

conditions. We did not repeat the more extensive kinetic experiments of Franch, et al. 

but qualitatively observed that the degradations were faster at high pH, in line with their 

observations [46]. 

We observed many of the same degradation intermediates as Franch, and a few 

more. This is probably reasonable, given that we used GC-MS detection, and they 

used HPLC with UV detection. However, we did not observe any acrylic acid, nor did 

Herrmann etal. in their study of malic acid, which generated fumaric/maleic acid [40]. The 

4-carbon intermediates observed included fumaric acid, malic acid, tartronic acid, tartaric 

acid, dihydroxyfumaric acid, and succinic acid. The 3-carbon intermediates included 3-

oxopriopionic acid, malonic acid, tartronic acid and 2-hydroxy-3-oxopropionic acid. The 

only identified 2-carbon product was oxalic acid. We did not assay for either acetic or 

formic acid. Control experiments showed that all observed compounds were stable on 

the time-scale of our experiments in the dark throughout the pH range used. 

As previously noted [46], there is a distinct dependence of the product mixtures 

on pH. The observed mixtures obtained after a fixed irradiation period of one hour and 

silylative workup are shown in Figure 1 and Scheme 2. A representative time-trace of 

intermediates of partial degradation at pH 12 is given as Figure 2. The standard initial 

concentration of maleic acid was 2.0 mM. Small quantities of very high molecular weight 

compounds (i.e., long GC retention times) were sometimes observed. The presence 

of dihydroxyfumaric acid (11) was deduced in the degradations at neutral pH from 

reductive workups using NaBD4, which yield deuterated tartaric acid before silylation. 

The ratio of mass intensities showed that slightly more than half of the tartaric acid peak 

represented 11. 

Control experiments consisting of partial degradations using 30 mM H202 and 

irradiation centered at 300 nm in lieu of Ti02 were carried out. These reactions produce 
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free hydroxy I and hydroperoxyl radicals. A very similar group of compounds was 

observed as we report for the pH 7 Ti02 experiments, regardless of the pH of the 

solutions with H202. Tartaric acid was the largest component of the product mixture, but 

fumaric acid was not observed. This is a good indication that the product distribution in 

the Ti02 experiments is a result of differential product formation, as opposed to rapid 

and selective dark degradation of some products at the high or low pH. Further controls 

showed that the product mixtures obtained from Ti02 were stable over at least several 

hours, longer than the timescale of the usual workup and analysis. 

• 2 I I  7 

• 3 • 8 

B 4 • 9 

• 5 • 10 

• 6 

E 
c 
0 

1 02
~ c 0) 

o c — 
o 
O 

0.1-

PH 

Figure 1. Product distributions after 1 h irradiation for degradations of 2.0 mM maleic 

acid at pH 2, 7, and 12. The residual maleic acid concentration was 1.4 mM, 1.2 mM, 

and 0.7 mM, respectively. See Scheme 1 for compound identification. 
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Scheme 2. 
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Figure 2. The variation of the relative concentration of maleic acid (•) and oxalic acid 

(O), tartronic acid (•) and tartaric acid (A) at pH 12. The original concentration of maleic 

acid was 2.0 mM. 

Isomerization mechanisms and the question of homogeneous versus surface-

bound mechanisms. 

One of the most important questions, from a fundamental perspective, regarding 

the nature of the substrate-catalyst interaction in photocatalytic degradation is whether 

reactions occur in the homogeneous bulk phase or at the surface of the catalyst. It is not 

a question that can be easily settled with steady-state kinetics experiments because 

every plausible kinetic model based on surface-bound or homogeneous reactive 
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intermediates reacting with substrate yields kinetic information of the same form [56]. 

Thus, this is still a question of some dispute, though the more conventional position at 

this point may be that most reactions occur at the surface [57]. Nonetheless, previous 

workers on this system argued that degradation at higher initial pH occurs in the bulk 

water [46]. This conclusion was based on the observation that the rate of the reaction 

rises, despite a lowering of the binding affinity of maleic and fumaric acid. Furthermore, 

methanol, a known scavenger of HO* was able to drop the rate of degradation by a 

factor of 2 at pH 9, but not at all at pH 3. 

We have suggested that hydroxyl-like chemistry may occur at or near the surface 

of the catalyst, but may have less rigorous requirements for specific adsorption modes 

or sites of adsorption than direct electron transfer reactions between the substrate and 

the photoactivated Ti02 particle [24,29]. For example, surface-bound hydroxy I radicals 

may be formed and remain stable until diffusion either from bulk or through multilayer 

adsorption brings an appropriate substrate in contact with the reactive species. On the 

other hand, it is unlikely that a valence-band hole will "wait around" for an organic 

substrate, rather than finding a surface trap to make a surface-bound hydroxy! radical. 

The formation of fumaric acid from maleic acid struck us as a reasonable case to 

test for surface-bound vs. bulk mechanisms and for the possibility of electron transfer as 

a mechanism that did not lead to Kolbe chemistry in a carboxylic acid. In principle, 

several mechanisms may be initially considered. 

• Direct photolysis might cause conventional photochemical cis-trans isomerization. 

This mechanism is eliminated by control experiments in which the Ti02 is not 

included that do not produce isomerization. 

• Acid- or base-catalyzed dark reactions might cause isomerization. Dark control 

experiments eliminate this pathway. 

• Superoxide and/or HOO* might reversibly add to the olefin, transiently 



www.manaraa.com

57 

eliminating the double bond and allowing isomerization. Experiments described 

in section 3.3 eliminate this as a likely explanation. 

• Maleic acid may serve as an electron donor to activated Ti02, transiently causing 

formation of the maleic acid radical cation, which would have a considerably lower 

barrier to rotation. This is the most conventional explanation [46,58,59]. One 

problem with this explanation is that it is the same initial step invoked for the 

Kolbe-type decarboxylation, though it is possible that the same radical cation 

could lead to both reactions. 

• Maleic acid may serve as an electron acceptor from photoactivated TiOa, 

transiently causing formation of the maleic acid radical anion, which would have a 

considerably lower barrier to rotation, particularly if C2 is protonated. 

Of these possibilities, and related reactions in homogeneous solution, we favor 

the reversible reductive electron transfer of maleic acid as will be justified below. A 

plausible mechanism is illustrated in Scheme 3. First, however, we offer an interpretive 

framework for the observed chemistry that varies slightly from that of Franch et al. The 

essential distinction is that while both they and we postulate two types of reactivity (of 

which one is electron transfer at the surface), we believe that there is no requirement for 

their assertion that the second type is reaction in the bulk phase of the water. Below the 

pKa of the acid, the fraction of adsorbed maleic acid, typical of carboxylic acids, is 

greater. This could result in the population of a qualitatively different binding mode or a 

particular type of binding site, both of which could favor the electron-transfer type 

chemistry. The distinction between this chemistry and HO* chemistry is shown by the 

results of photolysis of H202. At higher pH, the predominant chemistry is clearly 

different, but it need not be in the homogeneous aqueous phase simply because the 

apparent binding constant is moderately lower. We have reported similar changes in 
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chemistry from oxidative electron transfer chemistry to hydroxyl-like chemistry with the 

change of phenolic OH-groups to methoxy groups [29]. Here, adsorption is modified 

by the capping of the phenols and its resulting prevention of C-O-Ti type adsorption, 

rather than by changing pH. We argued that the hydroxy I type chemistry could be due 

to non-specific binding with the titania surface and/or reactions very near the surface. 

Alcohol additives were more effective in slowing down the hydroxyl-type chemistry 

than the electron transfer chemistry, but they were also shown to displace the poorly 

binding substrates; these were also the same ones that suffer the great proportion of 

hydroxyl-type chemistry. 

With this framework in mind, and having established that HO* from H202 

photolysis does not cause substantial cis-trans isomerization of maleic acid, we 

investigate whether maleic acid acts an the electron acceptor or donor with activated 

Ti02. Experiments were carried out in the absence of 02, using Ar purging rather than 

02 purging in otherwise "standard" conditions. This technique generally[60] results in the 

almost complete shutdown of degradative processes [24,25,29,61]; this is universally 

attributed to rapid and efficient e7h+ recombination because there is no 02 available to 

act an electron sink. Inhibition occurs even when reactions are postulated to occur by 

oxidative electron transfer. However, if an alternative efficient electron acceptor is 

available, then reactivity can continue. 

Standard maleic acid degradation suspensions, adjusted to pH 2, were 

prepared such that half were 02-purged as usual, and half were Ar-purged. After 1 h of 

photolysis, the 02-purged solutions had a total conversion of 24%. This could be fully 

accounted for by the appearance of fumaric acid (19%), malonic acid (1.4%), succinic 

acid (2.7%), and malic acid (0.9%). After an identical 1 h of photolysis, the Ar-purged 

solutions had a remarkable 83% conversion, of which 82.5% was fumaric acid, with the 

observable remainder being succinic acid. This experiment clearly demonstrates that 
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02 in fact inhibits the cis-trans isomerization of maleic acid. This is strong evidence that 

fumaric acid is acting as the electron acceptor. The simplest explanation for the 

increased efficiency is straightforward: under oxygenated conditions, 02 acts as a 

competitor with maleic acid for accepting electrons from activated Ti02. This 

interpretation requires that superoxide not be an effective catalyst for cis-trans 

isomerization (see below), that the radical anion isomerize by some unspecified 

mechanism, and that the radical anion be able to return the electron to Ti02 or another 

species [62]. An outline of a reasonable mechanism is given in Scheme 3. 

Scheme 3. A plausible schematic mechanism for cis-trans isomerization that begins 

with reductive electron transfer. The position of protonation is purely speculative. 
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This led us to attempt to obtain a photocatalyzed photostationary state of the 

maleic/fumaric acid mixture at pH 2. These experiments were carried out under standard 

pH 2 conditions, save that they were Ar-purged, and in one case fumaric acid was used 

instead of maleic acid. The results (Figure 3) show that this was achieved and that, as 

expected, fumaric acid is predominant. The final product mixture was very close to 92% 



www.manaraa.com

60 

fumaric acid, 7% maleic acid and 1% succinic acid, relative to the initial 2.0 mM 

concentration. It is interesting to note that the sole new product observed is a reductive 

product from maleic/fumaric acid, consistent with reductive electron transfer. What 

remains a surprise is that there is no oxidative chemistry from HOads or other species. 
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Figure 3. A photostationary state arrived at by photocatalytic treatment of either maleic 

or fumaric acid in the absence of 02 at pH 2. The final proportion of Fumaric acid is 

approximately 94%. 

The 02 vs. Ar experiment was repeated at pH 12, where the acids are 

completely dissociated when in the bulk phase. Under these conditions, after an hour, 

the oxygen-saturated sample had lost 85% of its initial maleic acid. Of that, only 2.5% 

was fumaric acid, with oxalic acid making the bulk of the remainder (78%) along with small 
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quantities of the other usual materials, in agreement with Franch's reports. This latter 

result, along with the high conversion obviously implies considerable downstream 

degradation. With Ar-purging, the total conversion was only 32%, of which only 2.2% 

was fumaric acid. (Of the rest, 29.5% was malic acid.) The most important result here is 

that Ar purging does not completely shut down the reaction. A reasonable interpretation 

is that maleic acid can act as an electron acceptor even at this high pH, but that in its 

deprotonated state it is not as reactive to isomerization, perhaps because it cannot 

undergo the necessary protonation for easy bond rotation before back electron transfer 

or other chemistry occurs (e.g., Scheme 3). The binding isotherms of Franch, et al. [46] 

clearly demonstrate that there is still adsorption between maleic or fumaric acid and Ti02 

even at high pH, which is at least consistent with this speculation. 

Another set of experiments were carried out in the presence of fluoride anion. 

The addition of fluoride anion to Ti02 suspensions at low pH has been shown to 

produce homogenous hydroxy I radicals and dramatically reduce the surface-bound 

chemistry of phenol, a poorly adsorbing substrate [54,55]. Qualitatively speaking, this 

effect is attributed to displacement of the surface hydroxy Is by fluoride and the 

concomitant change in surface properties. Water can be oxidized to form hydroxy I 

radicals that are not bound to the titania surface. For example, cyanuric acid, a 

compound that does not adsorb to Ti02 in solution and is ordinarily completely resistive 

to photocatalytic degradation by Ti02 slurries, is degraded by the Ti02/F system [63]. 

Minero also showed that Ti02/F was able to degrade phenol in the absence of 02 much 

more rapidly than does "naked" Ti02, though more slowly than in the presence of 02. 

Presumably, this derives from diffusing HO* effectively leading to more efficient charge 

separation than is possible with naked Ti02. 

Degradations of maleic acid and fumaric acid were carried out at pH 3 in the 

absence of 02 with fluoride added, and without fluoride as a control. Over the course of 
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an hour of simultaneous photolysis of the four samples, cis-trans isomerization was 

severely curtailed for the fluoride-containing samples. In one hour of photolysis of maleic 

acid in the absence of fluoride, the product distribution was fumaric acid 6.0%, succinic 

acid 1.0%, malic acid 2.0%, with a total conversion of 9.0%. In the presence of fluoride, 

isomerization is dramatically reduced. There was fumaric acid at only 1.8% and malic acid 

4.7% for a total conversion of 6.5%. The obvious implication here is that the 

isomerization requires surface adsorption, and thus electron transfer chemistry is again 

supported. 

When degradations were carried out in the presence of fluoride anion at pH 3 

with 02 purging, the mass balance was poor, even at moderate conversion. Thus, 

degradation of the early intermediates to C02 was probably faster than the initial step. 

While TOC experiments were not run to check this, the result is consistent with Minero's 

report of much greater mineralization with 02 than without [54,55]. At 31 % conversion of 

maleic acid, 0.3% oxalic acid, 1.6% fumaric acid, 0.6% tartronic acid and 2.2% tartaric acid 

were detected. A similar result showing very little isomerization was observed using 

fumaric acid as the starting material. Again, the implication is that solution phase 

chemistry is not responsible for the isomerization reaction. 

As a final control, the substrate was modified by using the methyl ester (i.e., 

dimethyl maleate), rather than the carboxylic acid. This would prevent a binding mode in 

which C-O-Ti linkages were made. Using otherwise standard degradation conditions, at 

neutral pH, the major observed products were the dimethyl ester analogs of tartaric acid, 

dihydroxymaleic acid, and the monomethyl ester of oxalic acid. At pH 2, however, the 

major product was dihyroxymaleic acid diester, with almost no dimethyl fumarate 

observed. We thus conclude that there is a quality about the carboxylic acid functionality 

itself that is required for efficient cis-trans isomerization, and we postulate that it is related 

to a C-O-Ti binding mode analogous to that which was proposed (for example) by 
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Moser et al. for aromatic acid derivatives [64], or characterized by Martin et al. for 4-

chlorocatechol [65]. The relevant bond lengths make it seem most likely that a single Ti 

atom is involved, but we cannot rule out a second one, nor can we be sure whether one 

or both of the carboxylic acids is adsorbed in this way. One might speculate that only a 

single carboxylic group is chemisorbed in order to account for the favoring of the trans-

configured fumaric acid over maleic acid, but this is certainly not a requirement. 

Mechanisms of oxygenation reactions 

Given our interpretation that the cis-trans isomerization is best explained by 

reversible reductive electron transfer chemistry, we wished to explore the possibility 

that some of the oxidation (or, perhaps more properly, oxygenation) products might 

begin with a step that itself was formally reductive in nature. The most obvious 

candidate was reaction between maleic acid and superoxide near neutral pH, where the 

latter is largely deprotonated and nucleophilic. While the acids are also largely 

deprotonated in homogeneous solution, they might still be associated with the titania in 

such a way as to make them behave like the ester, rather than the anion or dianion. 

Though the adsorption coefficient is not as high at high pH as it is acidic solution [46], we 

were intrigued with the possibility that a surface-bound tartaric acid might suffer from 

attack by nucleophilic hydroperoxyl/superoxide species, rather than electrophilic 

hydroxy I species, as outlined in Scheme 4, which is simplified for easier viewing. 

Maleic and fumaric esters are well known as good acceptors of nucleophilic attack (the 

O 

HO2C 
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Michael addition). 

Scheme 4. Possible mechanisms for formation of 9 and 11. For simplicity, free, rather 

than surface-bound compounds are shown. It is understood that protonation states will 

vary, though protons also stand in for potential Ti atoms in various potential bound 

states in the Scheme. 
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At pH 7 and 12, where the products are observed most readily, the H00/02* 

equilibrium lies far to the side of superoxide. It is obviously more nucleophilic than the 

conjugate acid, making step A more reasonable. Further, we hypothesize that the 

substrate is surface-bound to maintain its effectively "protonated" state with regard to 

Michael-type attack at the b-position, relative to the adsorbing acid group. Step B is 

thermodynamically downhill and related reactions are well known in the organic literature 

[66-72], In aqueous solution, 13 is an obvious precursor to 9 by either acid or base 

catalyzed ring opening. The path shown by steps D-F is the more conventional 

mechanism for oxidative chemistry under these and similar conditions [73,74], though it 

assumes termination by another low concentration intermediate, i.e., another peroxyl 

species in step F. We thus sought tests to explore plausibility of the path beginning 

with step A. The first was to test for the intermediacy of 13. 
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Compound 13, the epoxide of maleic acid, was prepared as its sodium salt. It 

was hypothesized that a competition between hydrolysis and oxidation might lead to 9 

and 11. However, photocatalytic treatment of 13 did not produce detectable amounts 

of 11 when degradations were carried out to low conversion at pH 2, 7, or 12. The 

major product at pH 2 was oxalacetic acid (16), with some tartaric acid formed. At pH 7, 

these were observed in reverse order of importance. At pH 12, even at low 

c o n v e r s i o n ,  m o r e  p r o d u c t s  w e r e  o b s e r v e d :  1 6 > 3 > 9 > 8 > 4 .  

ho2C^-c°2H 

16 

A hypothesis that might have accounted for the lack of observation of 16 in the 

degradations of maleic acid is that 16 is particularly rapidly degraded. In fact, 

degradations beginning with 16 at 2 mM did produce intermediates that were observed 

in maleic acid degradations. At pH 2, tartaric acid and dihydroxyfumaric acid were the 

most predominant products. At pH 7, tartaric acid was predominant. At pH 12, 

compounds 4, 8, 3, and 9 were observed, in that order of abundance, indicating that 

decarboxylation reactions had become competitive with initial hydroxylations. 

However, degradations of 16 were not significantly more rapid than those of any other 

substrate, and the very fact that it was so easily observed in the degradations of 13 cast 

doubt on the idea. 

It was also plausible that superoxide was involved in the reaction (e.g., step A 

followed by other chemistry), but that other details of the pathway in Scheme 3 were 

incorrect. Any mechanism that avoided the epoxide 13 would have been missed by 

the above experiments. Thus, we sought more direct evidence regarding superoxide 

itself. 
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Following the precedent of Pichat and coworkers [27,51-53], degradations were 

carried out in the presence of commercial samples of superoxide dismutase (SOD), an 

enzyme that catalyzes the disproportionation of superoxide to hydrogen peroxide and 

02. At near-neutral pH (using the commercial buffer), the presence of SOD did not 

qualitatively affect the rate of degradation of maleic acid. Neither did it suppress tartaric 

acid formation, which was still the major 4-carbon intermediate. (Small quantities of 

fumaric acid were also observed, consistent with ordinary degradations at this pH.) This 

suggests that superoxide is not the primary reactant in formation of tartaric acid. 

Finally, maleic acid was treated with superoxide solutions formed by dissolving 

commercially available K02 in dry DMSO containing 18-crown-6. Reactions were 

carried out in pyridine, anhydrous DMSO, and wet DMSO with superoxide:maleic acid 

ratios of 1:1, 5:1, and 1000:1. No maleic acid-derived products were observed at the 

lower ratios of K02:1. A trace quantity of fumaric acid (and oxalic acid) was observed 

after an hour of treatment at the 1000:1 ratio. These conditions are at orders of 

magnitude higher concentrations of superoxide than is plausible under normal 

photocatalytic conditions, though the solvent differs and the Ti02 surface does not serve 

to pre-organize the mixture. Nonetheless, we conclude that these experiments strongly 

argue against superoxide being the primary reagent reacting with maleic acid in ordinary 

photocatalytic conditions. No tartaric acid, oxalacetic acid or any 3-carbon compounds 

were observed in any of these experiments. 

We thus conclude that superoxide is not an important reactant in the formation of 

any of the four-carbon intermediates, including the cis-trans isomerization products. In 

the absence of evidence to the contrary, we thus favor the conventional hydroxy I 

addition steps as the primary reaction mode to get to the oxygenated products. 

The observed chemistry in neutral to basic oxygenated solution is, as Franch 

notes, very hydroxyl-like. This does not require that the chemistry be in the 
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homogeneous phase, though the current results do not require that it be at the surface. 

They only require the electron transfer chemistry in low pH be reductive. However, 

though our experiments are not compelling for surface-mediated chemistry other than for 

the isomerization reaction, we remain compelled by the experiments of Minero and 

others (e.g., Refs [54,55,57]), and feel that this should be the assumption in the 

absence of convincing evidence for homogeneous-phase chemistry. 

2. 4. Conclusions 

Partial photocatalytic degradation of maleic acid gives rise to most of the 

plausible oxygenated compounds with four carbons or fewer. Our observations are 

generally in line with the recent report of Franch [46], save that we do not observe by 

GC-MS acrylic acid, which they report with H PLC and UV detection. The cis-trans 

isomerism of maleic acid under acidic conditions is proposed to occur by way of 

reductive electron transfer to the adsorbed acid. The bases for this conclusion include 

the acid's superior adsorption at low pH [46], the near exclusivity of this process in the 

absence of 02 (which usually acts as an electron acceptor), the increase in observed 

isomerization rate in the absence of 02 (contrary to almost any other known 

photocatalytic degradation process), and the suppression of isomerization with the 

addition of fluoride to the system. An investigation into the possibility that other 

reactions begin with the reaction of maleic acid with superoxide in a similar 

electron/nucleophile-accepting mode produced results in clear contradiction with this idea. 

It is presumed that the formation of tartaric acid and dihydroxyfumaric acid - along with 

other smaller intermediates - occurs by conventional mechanisms beginning with 

hydroxyl attack on the substrate. 
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Chapter 3 

Photocatalytic Degradation of a Cyanuric Acid, 

a Recalcitrant Species 

A paper accepted by The Journal of Photochemistry and Photobiology. A: Chemistry 

Youn-Chul Oh and William S. Jenks* 

Abstract 

Degradation of cyanuric acid in aqueous suspensions of DeGussa P25 Ti02 

has been achieved by the addition of fluoride ion at low pH. Consistent with the 

work of Minero and Pelizzetti, it is suggested that this is due to the formation of 

homogeneous phase hydroxyl radicals. Support for this hypothesis is brought from 

successful degradations using other hydroxyl-generating conditions and the 

successful degradation of 4-f-butylpyridine, another organic compound previously 

shown to be resistant to Ti02-mediated photocatalytic degradation. 
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3 . 1 .  I n t r o d u c t i o n  

Nearly every organic molecule ever tested is degraded to C02, H20, and 

appropriate inorganic ions when exposed to Ti02-mediated photocatalytic 

degradation conditions in oxygenated water. This mineralization process is the 

basis upon which the use of Ti02 and other semiconductors for water purification is 

built. 

One of the very few organic molecules known to survive such treatment is 

cyanuric acid, 1. This is of both fundamental and practical interest. The latter is true 

because of the large family of triazine herbicides in popular usage, most notably 

atrazine. Several studies have all shown that atrazine and other triazine herbicides 

are all degraded to cyanuric acid in the presence of irradiated Ti02 suspensions, but 

that no further degradation takes place [1-7]. While it is known that cyanuric acid is 

generally difficult to chemically hydrolyze or oxidize [8], this result is still remarkable 

given the extreme generality of the Ti02 photocatalytic degradation method. In 

contrast, biologically based degradations using Pseudomonas sp. bacteria have 

been successful. These degradations proceed through biuret and urea, both of 

which are intermediates that are formally products of hydrolysis reactions [9-12]. 

Similarly, hydrolysis can be catalyzed by alumina in the range of 300 °C [13] or in 

supercritical water at even higher temperature and pressure [14]. 
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In neutral to acidic solution, 1 exists predominantly in the tautomeric form 

known as isocyanuric acid[8], which is related to cyanuric acid by a series of keto-

enol equilibria. (For convenience, we will consistently refer to the mixture of 

tautomers as cyanuric acid.) The pKa values are 6.9, 11.4, and 13.5, and most 

evidence suggests that the anion that is formed is that of the cyanuric acid tautomer. 

This suggests that cyanuric acid, were it adsorbed to Ti02, would probably be in the 

enolic form, but there is no direct evidence on this point. 

A few reasonable hypotheses might be proposed to account for the stability of 

1 to TiOg-mediated photocatalytic degradation, which generally occurs by electron 

transfer reactions and the action of adsorbed hydroxy! radicals. First, it might be 

argued that the principle reaction might simply be removal of one of the phenolic 

hydrogen atoms, either directly or by sequential electron and proton loss. The 

resulting phenolic-type radical might be sufficiently stable to survive until it can pick 
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up an electron to return to starting material or its conjugate base. Although it is well 

known that a great many aromatic compounds (including many phenols) are 

hydroxylated by irradiated Ti02 suspensions, we know of no specific evidence to 

contradict this assertion. A second hypothesis is that that hydroxyl radical addition 

does occur, but is reversible because loss of water or HO* results in a species that 

ends up returning to cyanuric acid under the conditions. We refuted this hypothesis 

a few years ago, showing that 180 in 1 is retained, at least on timescales that are 

relevant to the usual degradation chemistry [4], It might also be argued that the 

carbon atoms in cyanuric acid are already fully oxidized and are simply not reactive 

with the usual species formed in photocatalytic conditions. However, as we have 

also previously shown [4], urea is sensitive to Ti02-mediated degradation, even 

though its carbon atom is also formally at the C02 oxidation state. In this paper, we 

will present circumstantial evidence for what might be the simplest hypothesis of all, 

that 1 does not adsorb significantly to Ti02, and - given that the great majority of 

Ti02-mediated degradation chemistry occurs on the catalyst surface - cyanuric acid 

is not present where the active oxidizing species are formed. 

The factor that suggested this idea to us was the recent report from 

Nedoloujko that 4-f-butylpyridine (2) also withstood Ti02 conditions, but was 

degraded by Fenton chemistry [15]. This was important in that the degradations of 

pyridine derivatives have been reported a number of times[16-22] without any 

evidence that pyridines are particularly hardy species. It thus seemed at least 

plausible that something similar - presumably a lack of contact between the reactive 
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intermediates and the substrate - was occurring with cyanuric acid. Perhaps it was 

only the reputation of cyanuric acid as a particularly persistent molecule that made 

one propose that there would be special chemical explanations. 

Here we report the degradation of cyanuric acid, both using Fenton chemistry 

and the Ti02-fluoride system introduced by Minero and Pelizzetti [23,24], These 

authors, on the basis of elegant kinetic studies, proposed that addition of fluoride ion 

to Ti02 suspensions under acidic conditions causes the surface coating of the 

particles with fluoride and the production of homogeneous hydroxyl radicals. For 

simplicity, we will refer to conditions in which NaF has been added to Ti02 

suspensions as Ti02/F. The results simultaneously support two hypotheses: (1) that 

cyanuric acid is not pathologically resistant in principle to this type of degradation, 

but is not degraded by Ti02 because it does not bind at or near catalytically active 

sites, and (2) the Minero-Pelizzetti proposal that the Ti02/fluoride system is capable 

of producing mobile - and presumably homogeneous - hydroxyl radicals. 

3.2. Experimental 

Materials. 

All chemicals were obtained from Aldrich in the highest purity available and 

used as received, except as noted. The water employed was purified with a Milli-Q 

UV plus system resulting in a resistivity > 18 Mfi cm"1. Ti02 was DeGussa P-25. 
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Degradation and analysis procedures. 

Photocatalytic Degradation. All suspensions were prepared at 100 mg Ti02 

per 100 ml water. The pH was regulated by addition of HCI (pH 2), phosphate 

buffer (10 mM, pH 7) or NaOH (pH 12). NaF, if used, was added at a concentration 

of 40 mM. After an hour of stirring and equilibration in the dark, the desired organic 

(1 or 2) was introduced at a concentration of 300 pM. The mixture was dispersed in 

an ultrasonic bath for 5 minutes to disperse larger aggregates and then purged with 

02 and stirred for 20 minutes in the dark before the irradiation was started. The 

mixture was continuously purged by 02 throughout the irradiation except as noted. 

Irradiations were carried out with stirring at ambient temperature using a modified 

Rayonet mini-reactor equipped with a fan and 8 4-watt broadly emitting 365 nm 

fluorescent tubes. After the reactions, samples were acidified, centrifuged, and 

filtered to remove the Ti02. Water was removed by freeze-drying. Anthracene was 

added after photolysis as an external standard for GC analysis. 

H202 photodegradation. Solutions were prepared as above, leaving out Ti02. 

Immediately before photolysis, 1.0 ml_ of H202 (30% in water) was added. 

Photolysis and analysis were carried out in the ordinary way, save that broadly 

emitting 300 nm fluorescent tubes were used instead. 

Fenton reaction. Reactions were conducted at room temperature. Normal 

conditions were 300 pM of the organic substrate, 8 mM FeS04 and 80 mM H202. 

The pH of solution was regulated as usual. After desired reaction time, the resultant 

mixture was filtered through 0.2 jim Whatman filters without otherwise quenching the 
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reaction and the water was removed by freeze drying. Ordinary analyses were then 

used. 

Analysis. The dried samples were exhaustively silylated by treatment with 1 

ml_ of anhydrous pyridine, 0.2 ml_ of hexamethyldisilazane, and 0.1 ml_ 

chlorotrimethylsilane. The reactions were carried out in 1.5 ml_ plastic-stoppered 

vials. The resulting mixtures were shaken vigorously for about 60 seconds and then 

allowed to stand for 5 minutes at room temperature. Some precipitate was 

separated by centrifugation prior to chromatographic analysis. The intermediate 

products were analyzed as their TMS derivatives using GC-MS on a Varian star 

3400CX Gas Chromatograph using 25 m DB-5 column, coupled with a Magnum ion 

trap detector mass spectrometer (Finnigan MAT, San Jose, CA). The temperature 

program of column was as follows: at 150 °C, hold time = 2 min; from 150 to 200 °C, 

rate = 10 °C/min; then raise the rate to 40 "C/min until 280 °C. A HP 5890 series II 

Gas Chromatograph with a 25 m ZB-5 column and an FID detector was also used 

for routine analysis. 

Adsorption of Cyanuric acid to TiO/F and TiOs. Equilibrium extents of 

adsorption onto Ti02/F and Ti02 were evaluated after equilibration for fixed periods 

with vigorous magnetic stirring. The adsorption was evaluated at three different 

pHs: pH 2, 7, and 11 were held by HCI, and 30mM phosphate buffer, and NaOH, 

respectively. Suspensions were prepared containing 50 mg of Ti02 in 20 ml water 

and a variable amount of cyanuric acid. For Ti02/F 84 mg of NaF was added to 

each sample. After at least 9 h for equilibration, an aliquot was removed, and 
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syringe filtered twice through Millipore 0.22 and Poll 0.20 j^m filters to remove 

Ti02. The residual concentration of 1 was determined by UV-VIS spectroscopy 

using a Shimadzu UV-2101 spectrometer. 

3. 3. Results 

The experiments of Nedoloujko and Kiwi[15] were qualitatively reproduced. It 

was found that 4f-butylpyridine (2) was degraded only very, very slowly under typical 

Ti02 conditions, regardless of pH. However, at pH 2, using Ti02/F, 2 was degraded 

over the course of several hours. We do not dwell on the products formed under 

these conditions, as this compound was not of our primary interest. However, early 

in the degradation, in addition to the usual trace products, a few major products were 

partially identified on the basis of mass spectral data. A very small amount of dimer 

was formed. What appeared to be a single isomer of a hydroxylated product (mass 

= M + OTMS) was the largest new peak at modest degradation conversion. We 

assume this is the 3-hydroxylated material. An apparently single isomer of a 

bishydroxylated species (mass = M + 2 OTMS) was also observed. A second 

dioxygenated species was formed (mass = M + 2 O) that was not silylated, indicating 

that this was probably a ring-opened product. 

Additionally, samples of cyanuric acid (300 /vM) were exposed to the standard 

photocatalytic degradation conditions (100 mg Ti02 in 100 ml_ H2O, broad 365 nm 

irradiation, 02-saturated solutions) at pH 2, 7, and 12. Under no conditions was 
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measurable degradation observed, consistent with literature reports. 

Treatment of 1 at the same concentrations, but with the addition of NaF (i.e., 

TiOg/F conditions) were also carried out. At pH 12, no degradation was observed. 

At pH 7, some degradation was observed over the course of several hours, but 

degradation was 3-4 times faster at pH 2. A qualitative indication of the relative 

rates can be seen in Figure 1, which illustrates the remaining cyanuric acid after a 

fixed degradation period of 6 hours. Degradation kinetics were approximately first 

order for two half-lives, as is often observed for photocatalytic degradations. 

100 

0 
2 7 12 

PH 

• Ti02 0 TiOZ/NaF • Fenton 

Figure 1. Cyanuric acid remaining after a fixed period of irradiation under several 

conditions. The initial concentration was 300 fjM for all experiments. 
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Control experiments using extended irradiation in the absence of NaF 

indicated that the rate of degradation in the presence of fluoride ion at pH 2 was a 

minimum of 1000 times faster than in its absence. If either the Ti02 was left out of 

the suspension or the sample was flushed with Ar to remove all 02 and kept 

anaerobic, no degradation of 1 was observed on photolysis. 

At appropriate intervals during the degradations using Na/F conditions, 

samples were removed from the slurry. The Ti02 was removed from the slurry, and 

the residual material remaining after the water was removed was exhaustively 

silylated and subjected to standard GC-MS analysis. In no case were any 

intermediates in the degradation observed. Control experiments using potential 

intermediates urea and biuret (NH2CONHCONH2) showed that these compounds 

would have been observed had they been in the mixture. 

These results were compared to degradations held under other conditions. 

Photolysis of oxygen-saturated solutions initially containing 300 1 and 8.8 mM 

H202 at pH 2 using broadly emitting fluorescent bulbs centered at 300 nm resulted in 

successful degradation of cyanuric acid on a timescale similar to the Ti02/F 

experiments. An exact rate comparison is meaningless because the output of the 

lamps (though of the same order of magnitude) was not measured, and the 

absorption of light in the homogeneous sample is much different than in the highly 

scattering Ti02 suspensions. However, as expected, the degradations showed zero-

order kinetics, as appropriate for a homogeneous photochemical reaction limited by 

photon absorption. As before, no intermediates were detected. 
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Fenton chemistry using an excess of Fe(S04) and H202 in the dark was also 

applied to 300 solutions of cyanuric acid. As shown in Figure 1, these 

degradations were successful at every pH and showed less variation in rate. Again, 

the comparison of the absolute rates to the Ti02/F conditions is not particularly 

meaningful, but what is important is that degradations occur at all pH values tested, 

indicating that the lack of Ti02/F-mediated degradation at high pH is not a special 

feature ot the chemistry of 1, per se. As usual, no degradation intermediates were 

observed. 

The extent of adsorption of cyanuric acid to Ti02 was determined by UV/Vis 

spectroscopy. Samples were prepared using 50 mg Ti02 in 20 ml_ water and 

various concentrations of 1. Figure 2 shows the residual absorptions at 213 nm for 

three sets of samples: no Ti02, Ti02, and Ti02/F, all at pH 2 after removal of Ti02 by 

centrifugation and filtration. The data clearly indicate that there is no more than a 

few percent of the cyanuric acid adsorbed, even at the highest concentrations. Very 

similar data were obtained at pH 7 and 12, though the extinction coefficients (and 

thus the absolute absorptions) vary because of the protonation state of the cyanuric 

acid. 
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Figure 2. Residual absorption at 213 nm after removal of Ti02. Circles: no Ti02; 

Squares: Ti02; Triangles: Ti02/F. 

3. 4. Discussion 

Minero, Pelizzetti, and coworkers carried out an elegant set of experiments, 

based largely on kinetic analyses of the degradation of phenol, using Ti02 

suspensions at various pH values in the presence and absence of fluoride ion 

[23,24]. At low pH, fluoride displaces OH from the surface of the TiOa particles, with 

a maximum fluoride coverage calculated in the range of approximately pH 2.5 to 4.5, 

based on reasonable assumptions for the TiOH acid-base equilibria, the fluoride 

exchange equilibrium constant, and a fixed concentration of Ti02 and fluoride. For 
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phenol, they determined that at pH 3.6 with 10 mM F, virtually all of the reactivity of 

phenol is with homogeneous hydroxyl radicals formed by oxidation of water. They 

report a change in the ratio of ortho and para hydroxylation that occurs when NaF is 

present, though also note this can be sensitive to many parameters. 

We hypothesize here that this formation of freely diffusing hydroxyl radicals 

caused by addition of fluoride at low pH facilitates the photocatalytic degradation of 

cyanuric acid. Consistent with the data in Figure 2, we suggest that, more than its 

general resistance to hydrolysis and oxidation, the reason cyanuric acid is not 

degraded in the presence of "naked" Ti02 is that it does not adsorb to the surface of 

Ti02 to any measurable extent. Therefore, when surface-bound hydroxyl radicals or 

trapped valence bond holes are formed, it is effectively inert simply because it is 

virtually never in the immediate vicinity of the reactive species. In contrast to naked 

Ti02 conditions, cyanuric acid is degraded on photolysis of hydrogen peroxide or by 

Fenton chemistry. These results clearly show that it is not solely the inherent 

unreactivity of cyanuric acid that causes its stability to normal photocatalytic 

conditions by showing that it is degraded by homogeneously dispersed hydroxyl 

radicals (or in the case of the Fenton reaction, hydroxyl-like species). 

We further infer from the results of the Fenton and hydrogen peroxide 

photolysis results that the relative unreactivity of 1 does play a role in the current 

results, however. That comes from the result that no intermediates such as biuret or 

urea are observed. If the rate constants for "productive" reactivity between HO* and 

cyanuric acid are well below the near-diffusion controlled limit that is typical for 
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reactivity between HO* and organic substrates, then any putative stable 

intermediates may simply be much more reactive with HO* than cyanuric acid. In 

such a case, it is plausible that the intermediates never build up a reasonable steady 

state concentration because they are degraded faster than they are formed [25]. 

When cyanuric acid is subjected to Ti02/F photolysis conditions, formation of 

freely diffusing hydroxyl radicals is consistent both with the hypothesis of Minero and 

Pelizzetti regarding hydroxyl radical formation and with our own regarding cyanuric 

acid adsorption as the root cause for its inertness. Because this logic may be 

considered somewhat circular, it is important to note that Ti02-mediated degradation 

of 4-f-butylpyridine is also allowed by the addition of fluoride. There is no reason to 

believe that 2 possesses any special chemical resistance to hydroxyl-like species or 

valence bond holes, nor that it is reactive with fluoride ion. Indeed, Nedoloujko 

showed that it too is subject to oxidation by homogeneously dispersed reagents [15]. 

Thus, these paired results provide strong supporting evidence for the Minero 

hypothesis, this time using a very simple observable: removal of cyanuric acid from 

solution at least 3 orders of magnitude more rapidly than without the fluoride. 

Moreover, the observation of "ordinary" hydroxylation intermediates in the 

Ti02/F-mediated degradation of 2 is consistent with our explanation for the lack of 

observable intermediates in the degradation of 1 There is no reason to believe that 

compound 2 is considerably less reactive than any of its obvious derivatives towards 

HO*. Thus, the rate of intermediate formation is not grossly lower than that of 

intermediate degradation early in the course of the reaction, and the steady state 
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concentration initially builds up. In contrast, as in the homogeneous oxidations, the 

intermediates from degradation of 1 are consumed more rapidly than they are 

formed and are thus not detected. An unfortunate corollary of this is that, although 

the expected reactivity of hydroxyl radicals with 1 would presumably be by addition 

to the carbon atoms, any further mechanistic discussion is too speculative to be 

fruitful. 

The pH sensitivity of the degradation of 1 under Ti02/F conditions is also 

consistent with Minero. By working at pH 2, it is reasonable to suggest that we have 

not maximized the amount of surface fluoride coverage (which peaks at slightly 

higher pH according to them), though we used a higher [NaF] than Minero. 

However, the considerably lower rate at pH 7 is consistent with their prediction of still 

lower surface coverage by fluoride, and the complete lack of degradation at pH 12 is 

further consistent with their prediction of negligible fluoride coverage. An important 

secondary conclusion to draw from this work is that the formation of free hydroxyl 

radicals apparently does not depend on complete fluoride coverage. While 

undoubtedly more homogeneous HO* is formed with higher fluoride coverage, some 

appears to remain even at pH values where coverage is incomplete. The exact form 

of the pH dependence is beyond the modest scope of this paper, but it is clear that 

an accurate assessment of the level of fluoride coverage would be required [26]. 

Finally, it should be noted that we have not optimized the rate of cyanuric acid 

degradation with respect to lamp output, pH, Ti02 concentration, [NaF], etc., and it is 

possible that relative rates could be significantly improved with sufficient effort. 
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Previous to this, we are aware of only a single report of degradation of 

cyanuric acid by any Ti02-mediated system [27]. In contrast to the consistently 

reported result that cyanuric acid is inert to photocatalytic degradation when using 

Ti02 in suspension [1-7], these workers report that cyanuric acid could be degraded 

by use of their proprietary PHOTOPERM membranes. These membranes contain 

significant quantities of Ti02 immobilized in a polyester support formed by 

polymerization around pre-formed Ti02 particles. The reasons for this apparently 

anomalous result are not clear. However, it would be consistent with the current 

results if their immobilization procedure provides for binding sites that are more 

attractive to cyanuric acid in addition to immobilizing the Ti02 particles. Reactions 

between the Ti02 and cyanuric acid might then take place. However, this 

interpretation is purely speculative. 

3. 5. Conclusions 

The addition of fluoride to aqueous suspensions of titania has proved to be an 

important mechanistic tool in unraveling a long-standing conundrum in photocatalytic 

degradation. By using this method in parallel with other methods for producing 

homogeneous hydroxyl-type reagents, it is shown that cyanuric acid is susceptible to 

degradation under easily accessible conditions. The comparatively unrelated, but 

not as generally unreactive, 4-f-butylpyridine (which is also almost untouched by 

ordinary Ti02 photolysis conditions) is also degraded by Ti02/F. It gives predictable 
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hydroxylated intermediates, and thus supports the hypothesis that the induced 

reactivity is due to the formation of homogeneous HO. The reason that cyanuric 

acid is ordinarily inert to Ti02-mediated photocatalytic degradation appears to be that 

it simply is not bound to the reactive portions of the Ti02 surface to any measurable 

extent, perhaps in combination with its lower reactivity evident from other reactions. 

Its inherent chemical resistance to degradation is still exhibited in the inability to 

observe intermediate degradation products, regardless of degradation method, 

because the intermediates are consumed more rapidly than they are formed. 
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Chapter 4 

Isotope Studies of Photocatalysis. Ti02-Mediated 

Degradation of Dimethyl Phenylphosphonate 

A paper published by The Journal of Photochemistry and Photobiology. A: 

Chemistry 

Youn-Chul Oh, Yun Bao, and William S. Jenks* 

Abstract: The initial step of Ti02 mediated photocatalytic degradation of 

dimethyl phenyl phosphonate, labeled with 180 or deuteria in the methoxy group, 

results in products due to ring hydroxylation and demethylation. The 180 leveling 

experiments clearly demonstrate that the methyl group is lost, resulting in a 

phosphonic mono-acid, rather than substituting a hydroxy group for methoxy. 
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4 .1 .  In t roduct ion  

The oxidative degradation of phosphates and phosphonates has received 

significant attention in recent years because of their inclusion in chemical warfare 

agents and pesticides[1 -12]. Among the relevant compounds are sarin, soman, VX, 

and malathion. Because of the hazards associated with these compounds, most 

study has been done with model compounds, such as dimethyl methylphosphonate 

(DMMP). Our own interest is in Ti02-mediated photocatalytic degradation and 

indeed detailed lists of compounds observed in the degradation of DMMP are now 

available[1,2,6]. 
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Exposure of DMMP and related simple phosphonates to Ti02-mediated 

photocatalytic conditions results first in the loss of one of the methyl esters. An 

important unsettled mechanistic point is the mechanism by which the methyl is 

removed. The question is whether attack occurs at the methyl or at the phosphorus 

or both. 

As originally pointed out by O'Shea, one potential mechanism for the 

dealkylation of a phosphonate diester to the monoester is by an addition-elimination 

mechanism in which a hydroxy I radical adds to the phosphorus center to yield a 

transient 9-electron radical, as illustrated in Scheme 1. (Although illustrated as an 

oxygen-centered radical, it must be understood that the axial X-P-X system is a 3-

centered-4-electron bond, or, in this hypothetical case, a 3-centered-3-electron 

bond.) Subsequent loss of HO or CH30 should be approximately equally favorable, 

especially if the phosphorus center has sufficient lifetime to undergo Berry 

pseudorotation to place the aikoxyl group in the axial position. This mechanism is of 

particular interest because of the very well known chemistry in which hydroxyl 

radicals add to dimethyl sulfoxide at the sulfur center, causing expulsion of a methyl 

radical[13]. Furthermore, there is fundamental interest because of the question of 

the relationship between conventional free hydroxyl radicals and the adsorbed 

hydroxyl radical species presumed to be involved in photocatalysis. An alternative 

mechanism occasionally invoked in discussions of photocatalysis, but not discussed 

by O'Shea, is that local generation of a proton as a result of water oxidation leads to 

acid catalyzed hydrolysis of the phosphonate, again by attack at phosphorus. Either 
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of these mechanisms might be characterized by the observation of methanol 

production early in the degradation, as reported by Satyapal[7] under moist gas 

phase conditions. 

Scheme 1. Potential phosphonate dealkylation mechanisms 
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Alternatively, a very conventional mechanism can be written in which 

hydrogen abstraction occurs at the alkyl hydrogens, followed by 02 trapping. 

Russell chemistry[14] then leads to an easily hydrolyzable group. Formaldehyde 

and formic acid have both been detected as products^ ,6]. A recent study using 

radiolysis to generate hydroxyl radicals[8] supports this pathway, in that (indirect) 
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spectroscopic product studies indicated that carbon-centered radicals were formed. 

The same carbon-centered intermediate, can at least in principle, be obtained by 

sequential loss of an electron and a proton[6], a reaction considerably more likely 

with Ti02 than under radiolysis conditions. Finally, there is also no reason not to 

believe that mechanisms of both types (attack at P or at CH) cannot be occurring 

simultaneously. This circumstance might explain some confusion among reports in 

the literature. 

To address these issues, especially regarding the mechanism under 

conditions of Ti02-mediated photocatalytic degradation, we report a study on the 

initial steps of degradation of a closely related compound dimethyl 

phenylphosphonate (DMMP). We use the phenyl group to clearly distinguish 

reactivity on the alkoxyl groups form that on the phosphoric acid side of the 

functionality. As expected, this introduces a new set of hydroxylated products: 

dimethyl o-, m-, and p-hydroxyphenylphosphonates (OHP, MHP, and PHP, 

respectively), but we are less concerned with these than the product of 

demethylation: monomethyl phenylphosphonate (MMPP). To definitively and 

directly answer whether a substitution reaction or an alkyl degradation occurs either 

alone or in combination with other mechanisms, MMPP was prepared with 180 labels 

in the alkoxyl positions (180-DMPP), and to probe for kinetic isotope effects, the 

degradation of c/6-DMPP and d3-DMPP was also studied. 
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4. 2. Experimental Section 

General instrumentation 

1H and 13 C NMR (internal standard TMS),31P NMR (external standard 85% 

phosphoric acid) spectral data were obtained on a Varian DRX-400 MHz 

spectrometer. 31P and 13C NMR spectral data were obtained with 1H decoupling, but 

31P coupling remains in the 13C and 1H NMR spectral data. HPLC data were 

collected with an HP 1050 liquid chromatograph with diode array UV/VIS absorption 

detector. LC/MS data were collected on Shimadzu LC/MS-2010 by electrospray 

ionization (ESI) or atmospheric pressure chemical ionization (APCI). An ODS 

Hypersil reverse phase column (5 ;im, 200 X 2.1 mm, Hewlett Packard) was used. 

The eluent consisted of a 50/50 mixture of acetonitrile and water. GC data were 

obtained on HP 5890 gas chromatograph with a 30 m (0.25 mm ID x 0.25 |xm) DB-5 

column and an FID detector. Mesitylene was used as the internal standard when 

necessary. The GC/MS data were obtained on a VG Magnum ion trap, a Finnegan 

TSQ700 triple quadruple mass spectrometer, or a Micromass GCT time-of-flight 

(TOF) mass spectrometer, as indicated. Centrifugation was accomplished using an 

Eppendorf 5415 C Microcentrifuge. UV data were obtained on a Shimadzu UV-2101 

PC. 

Degradation and analysis procedures 

Standard degradation procedure. Suspensions were prepared containing 5 

mM DMPP and 50 mg Ti02 in 100 ml_ water. When 1802-DMPP was used, this scale 
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was dropped ten-fold. When regulated, the initial pH of the solution was controlled 

by using HCI (pH = 3), 10 mM phosphate buffer (pH = 7) or 10 mM carbonate buffer 

(pH = 10). The resultant mixtures were treated in an ultrasonic bath for 5 min to 

disperse large Ti02 aggregates immediately prior to photolysis. The 

photodegradation was performed in a Bayonet photochemical reactor with 8 x 4 W 

"black light" bulbs whose emission is centered at 350 nm. Solutions were purged 

with 02 for several minutes in advance of and during photolysis. Samples for 

analysis were taken out at desired time intervals. The Ti02 was separated by 

centrifugation with an Eppendorf Netheler Hinz 5415 C, followed by filtration through 

a syringe-mounted 0.2 |im Whatman filter to obtain 5 mL aliquots. This solution was 

analyzed directly when HPLC was used. For GC analysis, additional treatment was 

necessary. The water was removed in vacuo from the 5 mL aliquots. The samples 

were then silylated by dissolving in 0.5 mL pyridine, followed by treatment for a few 

minutes with 0.1 mL 1,1,1,3,3,3-hexamethyldisilazane and 0.05 mL 

chlorotrimethylsilane. After the pyridinium salts were separated by centrifugation, 

the samples were analyzed by GC/MS. 

H202 photodegradations. Solutions were prepared as above, leaving out 

the Ti02. Immediately before photolysis, 1.0 mL of H202 (30% in water) was added. 

Photolysis and analysis were carried out in the ordinary way. 

Fenton reactions. Reactions were conducted at room temperature. Normal 

conditions were 4 mM DMPP, 8 mM FeS04 and 80 mM H202 in aqueous solution. 

The pH was controlled at 7 by using 0.1 M phosphate buffer. After 15 min, the 
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resultant mixture was filtered through 0.2 ^m Whatman filters without otherwise 

quenching the reaction. Ordinary analysis procedures were then used. 

Persulfate oxidations. A solution at room temperature containing 10 mM 

DMPP and 3 mM K2S204 was purged with Arto remove 02. The resulting solution 

was held at 90 °K under Ar for 14 hours. After cooling, it was extracted with 

methylene chloride, and the residual material remaining after evaporation was 

silylated and analyzed as usual. 

Photochemical degradations were carried out using persulfate. These 

solutions contained 10 mM DMPP and 100 mM K2S204. The concentration of 

K2S204 was so high because the extinction coefficient at 254 nm is about one tenth 

that of DMPP. Photolysis of this mixture caused it to turn dark yellow. Samples 

were analyzed as usual. Control experiments, in which the persulfate was left out, 

showed that direct photolysis caused degradation on a much slower timescale than 

in the presence of persulfate. It was thus assumed that the photochemical 

degradation was due entirely to persulfate chemistry. 

Competition experiments. Competition experiments between DMPP and 

dg-DMPP were carried out like all other degradations, save that mixtures of the two 

isotopologs were used. The same total concentrations were used. MS analysis of 

the resultant mixtures allowed quantification of the MMPP and d3-MMPP produced. 

After accounting for the concentration ratios of the starting materials (usually 1:1), 

selectivities were obtained from these data. Mass spectral integrations were carried 

out from either GC-TOF data or ion trap data and were well within experimental error 
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of one another. 

Adsorption experiments. Either 5 or 25 mg Ti02 was added to 10 mL 

solutions of DMPP or other substrate at various concentrations. The resulting 

suspensions were stirred for a minimum of four hours. The Ti02 was removed by 

centrifugation and filtration as above, and the concentration of the organic 

compound in the supernatant was determined by quantitative UV spectroscopy. 

Dimethyl phenyl phosphonate e(264 nm) = 905 M"1cm"1; Monomethyl phenyl 

phosphonate e(263 nm) = 452 M"1cm"1; Dimethyl mete-hydroxyphosphonate e(283 

nm) = 2401 M~1cnT1. 

Materials 

DeGussa P25 Ti02 was used as received. Water was obtained from an 

ultrapurification unit from Millipore and had resistivity s 17 MW cm™1. DryTHF was 

obtained by distillation under argon from THF solution dried by sodium and 

benzophenone. Dried benzene was obtained by distillation under argon from 

benzene solution with CaH2. Phenylphosphonic acid was purified by recrystallization 

from ethyl acetate. Other solvents and reagents were used as received. Flash Si02 

column chromatography or preparative TLC with 2 mm thickness of silica gel on a 20 

cm x 20 cm glass plate was usually used to purify the products. 

Dimethyl phenylphosphonate (DMPP)[15], To a stirred solution of pyridine 

(6.57 mL, 0.081 mol) and methanol (3.14 mL, 0.078 mol) in 80 mL of methylene 

chloride at 0 °C under argon, phenylphosphononyl dichloride (5 mL, 0.035 mol) was 
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added dropwise. The mixture was stirred for 5 h at room temperature. The resultant 

solution was washed with cold water, cold 1 M HCI, cold saturated NaHC03 solution, 

and again with cold water, in that order. After drying over anhydrous MgS04 and 

subsequent removal of the methylene chloride in vacuo, crude DMPP (6.05 g, 93% 

yield) was obtained. DMPP was purified by Si02 column chromatography with ethyl 

acetate solvent to yield a clear viscous liquid. 1H NMR (400 MHz, CDCI3) ô 7.73 (2H, 

dd, J= 13.6, 7.5 Hz), 7.50 (1H, t, J= 7.5 Hz), 7.40 (2H, td, J= 7.5, 4.0 Hz), 3.68 (6H, 

d, J= 11.2 Hz); 13C NMR (400 MHz, CDCI3) Ô 132.7 (d, J= 12 Hz), 131.9 (d, J= 39 

Hz), 128.6 (d, J= 60 Hz), 126.9 (d, J =750 Hz) and 52.7 (d, J= 22 Hz); and 31P 

NMR (161.5 MHz, CDCI3) ô 22.2; MS (El, 70 eV, with TOP ion detector) M/Z (relative 

intensity), 187 (5), 186 (64), 185 (100), 155 (27), 141 (57), 91 (54), 77 (38). 

d6-Dimethyl phenylphosphonate (d6-DMPP). The preparation of d6-DMPP 

was the same as that of the DMPP except that methanol-d4 was used instead of 

methanol. d6-DMPP: 1H NMR (400 MHz, CDCI3) ô 7.76 (2H, dd, J= 13.6, 7.5 Hz), 

7.53 (1 H, t, J =7.5 Hz), 7.43 (2H, td, J= 7.5, 4.0 Hz); 13C NMR (CDCI3) ô 132.7 (d, J 

= 12 Hz), 131.9 (d, J =39 Hz), 128.6 (d, J =60 Hz), and 126.9 (d, J =750 Hz); and 

31P NMR (161.5 MHz, CDCI3) ô 22.2; MS (El, 70 eV, ion trap) M/Z (relative 

abundance), 193 (9), 192 (100), 191 (91), 162 (40), 142 (40), 94 (78), 94 (78), 77 

(10). 

180-Labeled phenylphosphinic aoid[16,17]. Dichlorophenylphosphine (0.6 

mL, 0.0042 mol) in 5 mL THF was added over 15 min to water (0.3 mL; 10% 180) in 

10 mL of THF under Ar. The mixture was stirred for 5 h, followed by removal of the 
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solvent in vacuo to produce phenylphosphinic acid, which was recrystallized from 

ethyl acetate to obtain the product (0.599 g, 96%). 1H NMR (400 MHz, CDCI3) ô 

7.74 (2H, dd, J= 14, 7.5 Hz), 7.69 (1H, t, J =7.5 Hz), 7.53 (2H, t, J= 7.5 Hz), 7.52 

(1H, d, J= 569.6 Hz); 31P NMR (161.5 MHz, CDCI3) ô 22.8. HPLC/MS (APCI) 144 

(20), 143(100), 142 (90), 91(7), 77(6). 

180-Labeled methyl phenylphosphinate[18]. Cold ethereal diazomethane, 

prepared from the Aldrich diazald kit immediately before using, was added to the 

above phenylphosphinic acid (0.599 g) until the yellow color persisted in the solution, 

and further stirred for 0.5 h at 0 °C. Solvent was removed in vacuo to generate 

reasonably methyl phenylphosphinate (0.661 g, 95.8%) that was sufficiently pure to 

be carried on to the next step. 1H NMR (400 MHz, CDCI3) ô 3.78 (3H, d, J= 12 Hz), 

7.70 (2H, t, J= 10 Hz), 7.59 (1H, d, J= 7.2 Hz), 7.51 (2H), 7.54 (1H, d, J =566 Hz); 

31P NMR (161.5 MHz, CDCI3) ô 27.8. GC/MS (El, 70 eV, with ion trap) M/Z 158 

(18), 157 (100), 156 (90), 141 (20), 126 (20), 91 (30), 77 (90), 51 (80). 

180-Labeled Dimethyl phenylphosphonite. This compound was prepared 

based on the procedure of Quin[19]. To the above crude methyl phenylphosphinate 

(0.661 g, 0.0042 mol), methyl trifloromethanesulfonate (0.65 mL, 0.0055 mol) was 

added dropwise. The reaction mixture was stirred for several minutes at room 

temperature, then cooled down to about -20 °C. Triethylamine (1.38 mL, 0.0099 

mol) in 20 mL dry benzene was added. The mixture was warmed up to ambient 

temperature, whereby two layers were formed. The top layer contained the desired 

dimethyl phenylphosphonite. 1H NMR (400 MHz, CDCI3) ô 7.64 -7.58 (2H, m), 7.47-
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7.38 (3H, m), 3.54 (6H, d, J = 10.4 Hz);31F NMR (161.5 MHz, CDCI3) ô 161.3; 

GC/MS (El, 70 eV, with ion trap) M/Z (relative abundance), 170 (60), 155 (100), 139 

(17), 109 (21), 93 (47), 77 (44), 63 (20), 51 (22). After removal of solvent, the 

resulting product mixture (0.524 g) contained a 2:1:3 mixture of dimethyl phenyl 

phosphonite, methyl phenylphosphinate and methyl methyl-phenylphosphinate,31P 

NMR (161.5 MHz, CDCI3) ô 44.8. Because dimethyl phenylphosphonite is easily 

hydrolyzed, this mixture was carried forward to the next synthetic step, where 

purification was more straightforward. 

180-Labeled Dimethyl phenylphosphonates (1802-DMPP).[15,20] f-Butyl 

hydroperoxide (3.0 M in isooctane,1.02 mL, 3.1 mmol) was added to the above 

product mixture (0.524 g). The mixture was stirred for 0.5 h. The solvent was 

removed in vacuo, and the residue (0.40 g) was obtained and purified by preparative 

TLC with ethyl acetate to yield 1802-DMPP (0.159 g, 20% from 

dichlorophenylphosphine). 1H NMR (400 MHz, CDCI3) ô 7.73 (2H, d, J= 7.5 Hz), 

7.50 (1 H, t, J - 7.5 Hz), 7.40 (2H, td, J= 7.5, 4.0 Hz), 3.68 (6H, d, J= 11.2 Hz); 13C 

N M R  ( 4 0 0  M H z ,  C D C I 3 )  ô  1 3 2 . 8  ( d ,  J =  1 2  H z ) ,  1 3 1 . 9  ( d ,  J =  4 0  H z ) ,  1 2 8 . 7  ( d ,  J  = 6 0  

Hz), 127.0 (d, J =750 Hz) and 52.7 (d, J= 22 Hz);31P NMR(161.5 MHz, CDCI3) ô 

22.37; GC/MS (El, 70 eV, TOF) M/Z (relative abundance), 188 (15),187 (30), 186 

(71), 185 (100), 156 (38), 155 (32), 141 (64), 91 (78), 77 (53). 

2H3-Labeled dimethyl phenylphosphonate (d3-DMPP). d3-DMPP was 

prepared using a sequence of reactions closely related to the preparation of 180-

DMPP. d3-Methyl phenylphosphonate was prepared from dichlorophenylphosphine 
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and deuterated methanol in 90% yield using the method of Lei[18). 1H NMR (400 

MHz, CDCy ô 7.7-7.8 (2 H, m) 7.45-7.60 (3H, m), 7.51 (d, J= 564 Hz). MS (El, 70 

eV, ion trap), M/Z 160 (100), 142 (27), 94 (38), 77 (98), 51 (73). This material was 

then methylated and oxidized as described immediately above to yield d3-DMPP. 1H 

NMR (400 MHz, CDCI3) ô 7.7-7.8 (m, 2H), 7.45-7.6 (m, 3H), 3.73 (3 H, d, J= 14.8 

Hz). IR (neat, cm"1) 3060, 2955, 2852, 2256, 2201, 2137, 2078, 1593, 1439, 1252, 

1045. OC/M S (El, 70 eV, ion trap) M/Z (relative abundance), 191 (100), 160(22), 

158(20), 142(83), 94(66), 77(63), 51(62). 

Monomethyl phenylphosphonate (MMPP)[21]. To a solution of phenyl 

phosphonic acid (0.326 g, 0.0020 mol) in dry A/,A/-dimethylformamide (10 mL) at -20 

°C, thionyl chloride (0.18 mL, 0.0024 mol) was added. The mixture was warmed to 0 

°C and kept at that temperature for 20 min. Then methanol (0.123 mL, 0.0030 mol) 

was added. Afterwards, the mixture was warmed to room temperature and stirred 

overnight. About 20 mL saturated sodium bicarbonate was added to the resultant 

solution. The aqueous solution was washed with ether (2x15 mL), and acidified 

with concentrated hydrochloric acid. The product was extracted with ethyl acetate. 

After drying over anhydrous MgS04 and subsequent removal of ethyl acetate, crude 

MMPP (0.24 g, yield 70%) was obtained. 1H NMR (400 MHz, CDCI3) ô 7.79 (2H, dd, 

13.6, 7.8 Hz), 7.51 (1H, t, J= 7.8 Hz), 7.41 (2H, td, J= 7.8, 4.4 Hz), 3.67 (3H, d, J 

= 11.2 Hz); 13C NMR (400 MHz, CDCI3) ô 132.4 (d, J = 11 Hz), 131.5 (d, J =40 Hz), 

128.5 (d, J = 60 Hz), 128.3 (d, J =770 Hz) and 52.5 (d, J =22 Hz);31P NMR (161.5 

MHz, CDCI3) ô 21.5. The purity of MMPP was determined by GCMS, but this 
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required silylation for the compound to tolerate the GC conditions. MMPP (1 mg) 

was treated for a few minutes with 0.5 mL pyridine, 0.1 mL 1,1,1,3,3,3-

hexamethyldisilazane and 0.05 mL chlorotrimethylsilane, followed by removal of 

pyridinium salts by centrifugation to yield the TMS derivative of MMPP in a mixture 

that could be shot directly on a GC column. The purity of the product is about 80% 

with DMPP (10%) and phenylphosphonic acid (10%) as the other major products. 

Attempts to further purify with preparative TLC were unsuccessful. The mass 

spectrum of the TMS derivative of MMPP: (El, 70 eV, TOP) M/Z (relative 

abundance), 244 (5), 229 (100), 199 (10), 153 (17), 121 (11), 89 (13), 75 (13). 

d3-Monomethyl phenylphosphonate (d3-MMPP). Methanol-d4 was used 

instead of methanol in the above procedure. 1H NMR (400 MHz, CDCI3) ô 7.80 (2H, 

dd, J= 13.6, 7.8 Hz); 7.53 (1H, t, J= 7.8 Hz); 7.43 (2H, td, J =7.8, 4.4 Hz); 13C NMR 

(400 MHz, CDCI3) ô 132.5 (d, J= 12 Hz), 131.6 (d, J =40 Hz), 128.5 (d, J= 60 Hz), 

and 128.2 (d, J= 770 Hz);31P NMR (161.5 MHz, CDCI3) ô 22.0; mass spectrum of 

the TMS derivative (El, 70 eV, with TOP ion detector) M/Z (relative intensity) 247 (5), 

232 (100), 200 (5), 156 (10), 121 (10). 

Dimethyl (o-hydroxy)phenyl phosphonate (OHD), dimethyl (m-

hydroxy)phenyl phosphonate (MHD), and dimethyl (p-hydroxy)phenyl 

phosphonate (PHD). These compounds were prepared as noted in the 

literature.[22] They were purified by preparative TLC with developing solvents 

methylene cloride/EtOAc (6:1), EtOAc, and EtOAc/MeOH (4:1), respectively. OHD: 

1H NMR (400 MHz, CDCI3) ô 10.1 (1H, s), 7.45 (1H, br t, J= 7.8 Hz), 7.34 (1H, ddd, 
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J= 14.4, 7.6, 1.6 Hz), 6.97 (1 H, br t, J= 7.6 Hz), 6.92 (1 H, tdd, J = 7.8, 4.2, 1 Hz), 

3.75 (6H, d, J= 11.6 Hz);31P NMR (161.5 MHz, CDCI3) ô 25.9; mass spectrum of its 

TMS derivative (El, 70 eV, ion trap) M/Z (relative intensity), 274 (22), 259 (100), 213 

(10), 156 (9), 135 (10), 107 (10), 73 (18), 59 (19). MHD: H NMR (400 MHz, CDCI3) 

ô 7.82 (1 H, d, J= 15.2 Hz), 7.35 (1H, dd, J= 13.6 Hz), 7.15 (1H, dd, J= 12.8, 7.6 

Hz), 7.10 (1H, d, J= 8 Hz), 3.77 (6H, d, J= 11.2 Hz);31P NMR (161.5 MHz, CDCI3) ô 

22.9; mass spectrum of its TMS derivative (El, 70 eV, ion trap) M/Z (relative 

intensity), 274 (25), 259 (100), 91 (7), 73 (10), 63 (8). PHD: 1H NMR (400 MHz, 

CDCIg) ô 10.1 (1H s), 7.61 (2H, dd, J= 12.4, 8.4 Hz), 7.01 (2H, d, J =4.8 Hz), 3.71 

(6H, d, J= 11.2 Hz);31P NMR (161.5 MHz, CDCI3) ô 24.8; mass spectrum of its TMS 

derivative (El, 70 eV, ion trap) M/Z (relative intensity), 275 (30), 259 (100), 109 (10), 

91 (8), 73 (15), 63 (8). 

4. 3. Results and Discussion 

General characteristics of Ti02-mediated partial degradations of Dimethyl 

phenyl phosphonate (DMPP). 

Standard conditions for degradations were 100 mL aqueous suspensions 

containing 50 mg DeGussa P25 and 5 mM DMPP. The pH of the solution was either 

unregulated or set to 3 with HCI, 7 with 10 mM phosphate buffer, or 9-10 with 

carbonate buffer. All solutions were treated in an ultrasonic bath to disperse 

aggregates immediately before photolysis and purged with 02 before and during 
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photolysis. Irradiation was carried out using broadly emitting 355 nm fluorescent 

tubes. Samples were removed at appropriate intervals and analyzed after removal 

of the Ti02. For HPLC analysis, no further processing was necessary, but for GC 

analysis, the water was removed and the resulting materials were exhaustively 

silylated with TMSCI and (TMS)2NH. Control experiments showed that degradation 

in the absence of any one or more of the key elements (light, Ti02, and 02) was 

negligibly slow. Without regulation of pH, complete loss of DMPP could be achieved 

in about 22 h and complete mineralization was achieved in about 33 h. A maximum 

of phenolic products, as observed by an unstructured UV absorption at 285 nm was 

observed at about 10 h. 

At early degradation times (e.g., 30 - 60 min), four primary degradation 

products were observed (Scheme 2). They result from hydroxylation of the arene 

ring in the ortho, meta, and para positions and from demethylation of the 

phosphonate. No phenol was observed. The meta hydroxylated product (MHD) 

was produced in about 3 times the concentration as the other isomers (which were 

formed in similar amounts), in keeping with the notion that hydroxylation by HO* ad is 

an electrophilic reaction. 
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Scheme 2. 

O 11 

MMPP 

DMPP 
O 
JJ-OCHG 

if OCH3 

O 
^-OCH3 

XOCH3 

HO 

OHD 0H MHD PHD 

The influence of pH on the initial rate of photocatalytic degradation of DMPP 

was briefly investigated. Degradations were carried out for 1 h at pH 3, 7, and 10, 

and the percentage DMPP remaining was assessed. The degradation was fastest 

at pH 10 (40% consumption), with 22% and 13% consumption at pH 7 and 3, 

respectively. This is in qualitative agreement with the observations of O'Shea for 

MMPP[1,2], 

The kinetics of the disappearance of DMPP could be fit to first order decays. 

The apparent rate constants for three concentrations in the mM range at pH 7 are 

shown in Table 1. The inverse relationship between [DMPP] and kapp is analogous to 

that observed by O'Shea for DMMP[2], though here the relationship is sufficiently 

strong that even the absolute initial rate of decomposition is slower for the higher 

concentrations. O'Shea suggested that strong adsorption by intermediate products 
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may be the cause of this. 

Table 1. First order rate constants and initial rates for the oxygen-saturated 

TiOz photoinduced disappearance of DMPP 

[DMPP] mM kapp (x10™5 s"1) Rate (M/s) 

_ 11.17 ± 0.1 2.7 x 10 ' 

4.6 3.6 ±0.3 1.6x10"7 

9.1 1.8 ±0.1 1.6 x10'7 

We thus investigated the adsorption of MHD, MMPP, and DMPP at pH 3, 7, 

and 10. At the high pH, where the phenol is presumably deprotonated, MHD 

adsorbs much more strongly than the other two in the concentration region 

investigated, as shown in Figure 1. However, while the adsorption of MHD is 

marginally stronger at the lower pH values, it does not appear to be sufficiently so as 

to completely displace DMPP at any pH unless it is the case that only very specific 

adsorption sites are active. It is, by now, understood that dark adsorption properties 

do not always correlate with reactivity, and it is not clear in the end what these data 

imply as to this particular phenomenon. 
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Figure 1. Adsorption isotherm for DMPP, MMPP, and MHD at pH10 with 25 mg 

Ti02 per 10 mL 
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Isotope labeling experiments on the demethylation of DMPP. 

In order to test whether substitution of a hydroxyl group for a methoxy group 

in DMPP goes by a mechanism that involves substitution of OH for CH30 or by a 

mechanism in which the methyl group is degraded off, leaving the oxygen behind, 

experiments were carried out using two different types of isotopologs of DMPP. 

The most critical of these is 180-DMPP. This compound was prepared by a 
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synthetic route that unambiguously places the 180 labels in the alkoxy positions, 

rather than at the phosphine oxide position (Scheme 3), so that any loss of 180 label 

carried into the MMPP product detected by MS is directly attributable to a 

substitution type mechanism. Using labeled water nominally 10% in 180, 180-DMPP 

was obtained with (9.23 ± 0.06)% enrichment was obtained, such that approximately 

18% of the DMPP molecules contained a single 180 label, and only a small fraction 

were double-labeled. 

Scheme 3. Preparation of labeled DMPP. 

V 1) CH2N2 *OCH O 
Phpci2Jio> Ph-T-H 2> CH*0Tf, Ph-p 3 Js 

OH *OCH3 
Ph'^)CH™3 

18 O-DMPP 

o 
OCHO rni Q 

phpc,2^ ^OTU 
OCDQ OCD3 OCD 3 

d,-DMPP 

Degradations were carried out in the usual fashion, save for a 10-fold drop in 

scale, at pH 3, 7, and 10, and also with H202 in lieu of Ti02. The results of these 

experiments, shown in Table 2 are unambiguous: there is no significant loss of 1sO, 

and thus the mechanism of loss of the methyl group cannot involve direct attack by 

any species at the phosphorus center in such a way that expels CH30 or CH30 . 

Naturally, the 180 is also retained in the hydroxylated products. 
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Table 2. 180 Enrichment in MMPP after formation by degradation of DMPP 

18 0 enrichment in MMPP (%)* 

Without control of pH 

C
M

 o
 

+i C
M

 C
D

 

pH = 3, Ti02, hv 9.4 ± 0.3 

pH = 7,Ti02, hv 9.4 ± 0.1 

pH =10, Ti02, hv C
D

 

C
O

 

l+ o
 

H202, hv 9.0 ± 0.2 

Errors limits are the standard deviations among triplicate or greater measurements. 

Enrichment of DMPP is 9.23 ± 0.06%. 

We thus sought to confirm that the product/rate determining step in the 

sequence that leads to MMPP is hydrogen abstraction. In previous reports, we have 

shown an H/D selectivity[23] of approximately 3 for the demethylation of trimethyl 

cyan urate and anisole[24,25]. In the spirit of these previous experiments, we 

prepared d6-DMPP from phenylphosphonyl dichloride and deuterated methanol. 

Degradations were then carried out in which both unlabeled DMPP and d6-DMPP 

were employed. Usually the ratio of the two isotopologs was kept near 1.0, but 

several experiments were also run with ratios of 1:3 and 3:1. After compensating for 

the isotopolog ratios, the ratio of MMPP to d3-MMPP is taken as the H/D selectivity 

for the demethylation reaction. To our surprise, the H/D selectivities were very near 

1.0, i.e., essentially no selectivity (Table 3). This implied either that hydrogen 
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abstraction is not the product/rate determining step or that an unusually small 

primary isotope effect was being observed. 

One alternative mechanism that would remove isotope-selective hydrogen 

abstraction as the rate determining step is to hypothesize that the initial step is 

electron transfer from the phosphonate to the Ti02. This would presumably not have 

any isotope selectivity. Subsequent loss of one of the methyl protons from the 

resulting radical cation would in principle be istotope-selective, but if the efficiency of 

that step is near 1, the selectivity would not be observed. We thus subjected 

mixtures of d6-DMPP and DMPP to several other conditions that were thought to 

produce hydroxyl radicals and/or the possibility of electron transfer reactions, 

thinking that perhaps a pattern would arise that would be consistent with this 

hypothesis. Instead, as can be seen in Table 3, the H/D selectivity was near 1.0 for 

the whole set of conditions. While the numbers were almost all slightly greater than 

1.0, we were not convinced that this represented a real, very small selectivity. 
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Table 3. H/D isotope selectivities of DMPP demethylation under different 

experimental conditions and general product distributions at low conversion 

Degradation conditions H/D selectivity MMPP OHD MHD 

Relative Yields 

PHD 

Ti02, hn, 02 1.07 ±0.04 67 2 24 7 

pH unregulated 

Ti02, hn, 02, pH 3 1.05 ± 0.08 

Ti02, hn, 02, pH 7 1.05 ± 0.08 

Ti02, hn, 02, pH 10 1.01 ±0.04 

H202, hv 0.99 ± 0.05 

Fenton, pH 7 1.01 ±0.13 81 

C
O

 C
D

 

5 

KgSgOg, 90 "C 0.99 ±0.03 100" 

K2S208, hn 1.05 ±0.13 100a 

Ti02, hn, 02, NaF pH 3 1.02 ± 0.02 70 3 23 4 

Ti02, hn, Ar, NaF pH 3 100= 

Error limits are standard deviations from multiple runs. a No other primary products 

were detected at levels above ~3% of MMPP. 

Among the chemical methods used, we did not expect an electron transfer 

mediated mechanism for Fenton chemistry or hydrogen peroxide photolysis, but 

persulfate chemistry can sometimes lead to direct 1-electron oxidation, along with 
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oxidation by sulfate radical anion and/or hydroxyl radical. We attempted sub-band 

gap irradiation of TiOz suspensions (broad irradiation with cutoff filter having 50% 

transmittance at 435 nm) with the idea that successful degradation here would 

clearly indicate electron transfer via irradiation of a charge transfer complex, but no 

degradation was observed after extended irradiation. By contrast, irradiation of low 

pH suspensions of Ti02 in the presence of NaF are known[26,27] to produce free 

hydroxyl radicals. In the end, we realized we could not absolutely rule out even that 

the hydroxyl radicals would react by this stepwise electron/proton transfer, though 

we thought it unlikely. 

Thus, we resolved to explore one last route to probing for such an isotope 

effect and considered the degradation of d3-DMPP. Its preparation is shown in 

Scheme 3. For this compound, the observed ratio of d3-MMPP to MMPP reflects 

the H/D selectivity, since it is the other methyl group that has been removed. A key 

difference between this intramolecular competition compared to the intermolecular 

competition is that if electron transfer is an irreversible primary step, there still 

remains the possibility for isotope selectivity in the deprotonation of the radical 

cation. In contrast, for the bimolecular competition experiments, once the electron 

loss has occurred, the choice for H+ or D+ loss has already been made. The results 

of this set of experiments are shown in Table 4, along with product distributions 

taken from very low conversion (<10%) measurements. 
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Table 4. H/D Selectivities observed for demethylation of d3-DMPR and relative 

product distributions at the lowest conversions 

Degradation Conditions H/D Selectivity 

Ti02, 02, hv 1.38 ± 0.08 

H202, 02, hv (300nm) 1.21 ± 0.14 

Fenton 1.22 + 0.13 

The H/D selectivities in Table 4 appear convincingly to be greater than 1.00, 

but are still quite small for a primary isotope effect. They are, in fact, what one might 

expect for a secondary isotope effect with attack at the methyl group. However, 

such a mechanism does not seem physically reasonable. A survey of the literature 

on the deprotonation of related radical cations (e.g., dimethyl aniline structure types 

and/or benzyl structure types) suggests that directly measured kinetic isotope effects 

for radical cation deprotonations, while structure-dependent, are in the normal range 

for primary KIEs, i.e., 2-7, with a few very large ones that implicate H-atom 

tunneling[28-33]. We were unable to find any directly measured KIEs for radical 

cations more closely related to DMPP'+ than these. Though we have difficulty in 

rationalizing this final magnitude of an H/D selectivity (i.e., related to a kinetic isotope 

effect), the important point remains that the fact that there is any isotope effect to be 

observed at all further implies that the mechanism of demethylation derives from 
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attack at the methyl group, rather than attack at phosphorus. 

4. 4. Conclusions 

The Ti02-mediated photocatalytic degradation of phosphonates is now well 

understood to include removal of the alkyl ester portion of the compounds to 

produce phosphonic acid monoesters among the primary steps. While there is 

ambiguity in the interpretation of small H/D selectivity in the dealkylation of DMPP by 

TI02 photocatalysis and various other methods, the results of 180 labeling are clear. 

They do not rely on any kinetic effect, and the retention of 180 in the formation of 

MMPP clearly demonstrates that the dealkylation mechanism involves degradation 

of the methyl group exclusively, and neither attack at phosphorus by HOads or a 

related species, nor photoinduced hydrolysis. 
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Chapter 5 

Photocatalytic degradation of organics using W0x-Ti02 

A paper to be submitted to The Journal of Photochemistry and Photobiology. A: 

Chemistry 

Youn-Chul Oh and William S. Jenks 

Abstract 

As an attempt to extend photocatalytic activity of modified Ti02 photocatalysts 

with light and to decrease the rapid recombination of photogenerated electrons/holes 

during photoreaction, WOx-TiOa powder was prepared by a sol-gel method. This 

method is distinct from the incipient wetness method and grafting method, which can 

provide a true composite semiconductor catalyst by binding the W to every possible 

site of Ti02. The goal to degrade organic contaminants in aqueous solution by using 

W0x-Ti02 with visible light irradiation was achieved. The modification of Ti02 by W 

shows its benefit of utilizing visible light for photocatalytic degradation of organic 

compounds. Differently prepared (incipient wetness method for P25 Degussa and 

PC 50 Millennium Chemical) W0x-Ti02 also shows similar effect of photoactivation 

with visible light. W0x-Ti02 by sol-gel method consistently shows higher degradation 

efficiency (c.a. 20%). 



www.manaraa.com

121 

5.1 .  Introduct ion 

TiOg has been shown to be an excellent photocatalyst for the degradation of 

organic contaminants in water and air. Nearly every organic molecule ever tested 

was degraded to C02, H20, and appropriate inorganic ions when exposed to Ti02-

mediated photocatalytic degradation conditions in oxygenated water. However, 

single component semiconductor photocatalyst such as pure Ti02 has two 

limitations. Firstly, Ti02 is a wide band gap (3.2 eV) semiconductor that can be 

excited by high energy UV irradiation (with a wavelength of 385 nm for anatase and 

410 nm for rutile). This allows that no more than 5% of sunlight can be utilized for 

photocatalytic degradation since the proportion of UV light in the solar spectrum is 

very low (less than 5%) [1], Secondly, a low rate of electron transfer to oxygen and 

a high rate of recombination between excited electron/hole pair results in a limited 

quantum yield for photocatalytic degradation [2-4]. 

In principle, a photocatalytic reaction may proceed on the surface of Ti02 

particles in several steps [5, 6], namely; 

(a) Production of electron-hole pairs, photogenerated by exciting the semiconductors 

with light energy greater than band-gap; 

(b) Separation of electrons and holes by traps available on the Ti02 surface; 

(c) A redox process induced by the separated electrons and holes with the adsorbed 

molecules present on the surface; and 

(d) desorption of the products and reconstruction of the surface. 
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Electron-hole recombination, which lead the low quantum yields, is in indirect 

competition with the trapping process (step b). The efficiency of trapping and the 

photocatalytic activity of Ti02 can be enhanced by retarding electron-hole 

recombination. The most common method for slowing electron-hole recombination 

is thought to be through the loading of metals onto the surface of the Ti02 particles. 

It is thought that the metal dispersed on the Ti02 particles expedites the transport of 

electrons produced by the photo-excitation to the outer system[7]. It has been 

shown that the photocatalytic activity of TiOa is influenced by the crystal structure 

(anatase and/or rutile), surface area, size distribution, porosity, surface hydroxy I 

group density, etc [6, 8, 9]. These have an influence on the production of electron-

hole pairs, the surface adsorption, the desorption process and the redox processes. 

Previously, photochemical deposition of metal on semiconductor particles has 

been used to recover noble metals from waste solution [10]. This technique has 

been widely employed for the purpose of improving the photocatalytic activity of 

semiconductors by depositing metals on the catalyst surface. Pt, Pd, Au, Rh, Ru02, 

etc. have all been utilized [11-15], However, these metals may not be suitable for 

industrial applications since they are rare and expensive. In this study, less 

expensive W03 was used for the preparation of efficient modified photocatalysts [2-

4]. 

Modified photocatalysts (composite semiconductors) can extend the photo-

response of large band-gap semiconductors. Depend on the topology, they can also 

rectifies the flow of photo-generated charge carriers [16, 17], and improve the 
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efficiency of dye sensitization [18, 19], and interfacial charge transfer processes. 

Composite semiconductors can be classified into two categories, namely, capped-, 

and coupled-type hetero structures. The capped semiconductors essentially have a 

core-shell geometry while in a coupled system two semiconductors are in contact 

with each other. The principle of charge separation in capped and coupled 

semiconductor system, which was adapted from Kamat's figure, is illustrated in 

Figure. 1. [16, 20] 

Figure 1. Principle of charge separation in semiconductor heterostructures: (a) 

capped (or Core-Shell) geometry and (b) coupled geometry. Electrons accumulate 

at the conduction band (CB) of WOx while holes accumulate at the valence band 

(VB) of Ti02. 

M 

(a) Capped (or Core-Shell) Geometry (b) Coupled Geometry 
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While the mechanism of charge separation in a capped semiconductor 

system is similar to that in coupled system, the interfacial charge transfer or charge 

collection in a capped site is significantly different. Only one of the charge carriers is 

accessible at the surface in a capped semiconductor system, thus making selective 

charge transfer possible at the semiconductor/electrolyte interface. The other 

charge carrier (e.g., the electron in example of Fig 1.) gets trapped within the inner 

semiconductor particle and is not readily accessible [16, 20]. However, the trapped 

charge carriers would not accumulate within the bulk semiconductor forever; they 

will eventually escape from the trap after retarding fast e"cb/ h+
vb (electron/hole) 

recombination. In a coupled semiconductor system both holes and electrons are 

accessible for selective oxidation and reduction processes on different particle 

surfaces. Our modified photocatalysts can be belonged to the capped geometry 

(reductive isomerization of maleic acid or reduction test of quinone will be a probing 

experiment). However, the cartoon shown above is more proper to explain 

geometry of band-edge and related oxidation/reduction potential than actual 

geometry. Actual geometry is looks like evenly dispersed sugar on the surface of 

sugar cookie. 

In this study, W0x-Ti02 samples were prepared by a sol-gel process with the 

aims of extending the light absorption spectrum toward the visible region. We are 

particularly interested in a recent report by Li et al. that describe the preparation and 

characterization of WOx-dispersed Ti02 by the sol-gel method [2], These catalysts 

have relatively featureless absorption spectra that extend well into the visible, 
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potentially making them extremely valuable photocatalysts because they will absorb 

a greater fraction of sunlight. Their photocatalytic effectiveness were tested by 

measuring the disappearance of methylene blue. Hence, we tried to prepare some 

of this material and assess it with more typical substrates, where mechanistic 

information is more available, to understand if the same general mechanisms apply 

for organic degradation, despite the narrower band gap. With an attempt to activate 

the modified Ti02 photocatalysts by the visible light and decrease the rapid 

recombination of excited electrons/holes during photoreaction, W0x-Ti02 powder 

was prepared by a sol-gel method. The W0x-Ti02 catalysts were characterized by 

XRD, XPS, and SEM-EDX. The attempt to decompose 4-methoxyresorcinol and 4-

chlororesorcinol in aqueous solution by using W0x-Ti02 under visible light was 

tested. 

5. 2. Experimental Section 

Materials. All reagents were purchased from Aldrich and used without further 

purification unless otherwise indicated. The water employed was purified by Milli-Q 

UV plus system (Millipore) resulting in a resistivity more than 18 MQ cm"1. Ti02 were 

Degussa P-25 and DT52, PC 10, PC 50, PC 100, and PC 500 from Millennium 

Chemical. 4-Methoxyresorcinol was prepared by a reported method [21]. 

Preparation of W0x-Ti02 catalysts. W0x-Ti02 was prepared by a sol-gel 

method modified from Li's method [2]. The W0x-Ti02 samples with different WOx 
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fraction from different WOx source were also prepared by sol-gel process. A Ti02 

transparent sol was prepared by using 17.5 g of Ti(0-nBu)4, 120 ml of ethanol, 15 

mL of acetic acid, and 5 mL of de-ionized water, and aged for 1 day (stirring at room 

temperature). Then, 60 ml of aqueous solution of containing 1.52 g of ammonium 

paratungstate ((NH4)10W12O41, F.W.= 3042.55) was added drop-wise to the Ti02 sol 

under vigorous stirring over 2h until W0x-Ti02 (1 mol % of WOx to Ti02) gel is 

formed (similarly 3 and 5 % W0x-Ti02 samples were also prepared by using 4.56 g, 

and 7.61 g of ammonium paratungstate). We also used different source of tungsten , 

ammonium tungstate, and WOx-TiOs (3 mol % of WOx to Ti02) gel prepared as 

mentioned above. W0x-Ti02 gel was aged 2 days with vigorous stirring, 1 day 

undisturbed and then 1day with vigorous stirring. The W0x-Ti02 gel was dried with a 

rotary evaporator at 358 K until the dried gel was formed. As W0x-Ti02 gel was 

dried, it shrunk and coated the surface of flask, and eventually formed a powder. 

After drying, W0x-Ti02 samples were ground and sintered at 923 K for 2h. Grinding 

was carried out by SPEX® Mill (ball mill, which grinds samples by placing them in 

a container along with one grinding elements, and imparting motion to the 

container. The container is cylindrical agate vial; the grinding element is agate 

ball. As the container is vibrated, the inertia of the grinding elements causes 

them to move independently, into each other and against the container wall, 

grinding the sample) for 8 Min. Hand ground samples were prepared also 

prepared by using agate mortar and pestle. W0x-Ti02 was sintered using the 
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following procedure. Dried samples were placed in porcelain crucibles, and the 

crucibles were placed in a furnace at room temperature. The furnace was heated at 

a moderate rate (10 K/min) to make sure volatiles did not discharge and powder 

from the crucibles. Once the furnace reached the temperature of 923 K, a timer was 

set for 2 h. A calibrated thermocouple was placed in the center of the cluster of 

crucibles to continuously monitor the temperature at the location of the samples. 

After 2h, the furnace was allowed to cool down slowly for 2h. When the samples 

and crucibles were down near room temperature they were removed from the 

furnace and the powders were immediately transferred to vials. Incipient wetness 

method reported by Do et al. [3] was used to prepare W0x-Ti02 from commercial 

Ti02 such as P 25 DeGussa, and PC 50 Millennium Chemical. 

Characterization of photocatalysts. X-ray diffraction (XRD), X-ray 

photoelectron emission spectroscopy (XPS), scanning electron microscopy (SEM), 

and SEM-Energy Dispersive X-ray spectrometry (SEM-EDX) examined the chemical 

composition, particle size, and morphology of W0x-Ti02. 

Powder X-ray diffraction (XRD) experiment were performed to determine the 

crystal phase composition of the prepared photocatalysts (W0x-Ti02). XRD 

measurement was carried out at room temperature using a Scintag 2000 

diffractometer with Cu Ka radiation. The accelerating voltage of 40 kV and emission 

current of 30 mA were used. 
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X-ray photoelectron spectroscopy (XPS) was carried out to study the valance 

state of the photocatalysts. The XPS measurements were performed with a Perkin 

Elmer Model 5500 multi-technique spectrometer employing monochromatized Al Ka 

radiation. The take-off angle was fixed at 45°. The X-ray source was run at 14kV 

and 250 W. The emitted photoelectrons were sampled from a 1 mm2 area. The XPS 

energy scale was calibrated against Au 4f7/2 and Ag 3d5/2 peaks at 84.0 and 

368.27 eV, respectively. The sample was mounted on an Indium foil for XPS 

analysis, and placed in the XPS chamber. The temperature was measured with a 

Type K thermocouple. The base pressure of the chamber was about 3x10"10 Torr. 

The instrumental Gaussian full-width at half maximum (GFWHM), which 

characterizes the resolution, was 0.65 eV for the AI source. 

W0x-Ti02 particle morphology was determined by scanning electron 

microscopy (SEM) using a Hitatch S-2460N variable pressure scanning electron 

microscope with 20 kV accelerating voltage and ~0.5 nA of beam current for imaging 

in 25 mm working distance. 

Oxford Instruments Link Isis Model 200 x-ray analyzer was used for SEM-

EDX analyses to characterize the W0x-Ti02 particles and the location of tungsten 

atom (mapping). High-purity Ge, light-element X-ray detector was employed and the 

take-off angle was fixed at 30°. 

Standard degradation conditions. Except as noted, degradations followed 

these standard conditions. A 100 mL aqueous solution containing 2.0 mM starting 
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material (for example 4-methoxyresorcinol) and 50 mg suspended Ti02 was 

prepared. The pH of solution was adjusted by HCI (pH 2), phosphate buffer (10 mM, 

pH 7.0), or NaOH (pH 12). The mixture was treated in an ultrasonic bath for 5 

minutes to disperse larger aggregates and purged with 02 for 20 minutes in the dark 

before the irradiation was started. The mixture was continuously purged with 02 

throughout the experiment. Irradiations were carried out with stirring and a fan that 

kept the temperature near to ambient levels in a Bayonet photochemical reactor 

equipped with six 8 W fluorescent bulbs (RPR4190, The Southern new England 

Ultraviolet Co.) which have a broad emission spectrum centered at 419 nm. After 

reaction, the mixtures were acidified to pH 2, centrifuged, and filtered to remove 

Ti02. Water was removed by freeze-drying. 

A 150 W Xe-Arc lamp with cut-off filter from Ealing® (50% of transmittance at 

435 nm) was also applied for irradiation source for visible range. The concentrations 

of the samples were the same as with the Rayonet-based experiments, but smaller 

samples (10 mL) were used. 

Dark adsorption. Equilibrium extents of adsorption onto Ti02 were 

evaluated after equilibration for fixed periods with vigorous magnetic stirring. The pH 

of solution was adjusted by HCI (pH 2), phosphate buffer (10 mM, pH 7.0), or NaOH 

(pH 12). Suspensions were prepared from 10 ml aliquots of solution with 5 mg Ti02. 

After allowing the desired contact time, an aliquot was removed, centrifuged, and 

syringe filtered through Millipore filters to remove TiOa. The residual concentration of 
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the compounds was determined by UV-VIS spectroscopy using a Shimadzu UV-

2101 spectrometer. Kinetic study showed that the extent of adsorption reached a 

constant value after no more than 4 h for all compounds [21]. For the quantitative 

adsorption experiments, at least 12 h equilibration was allowed before 

measurement. 

General analytical methods. Following the removal of water, the 

intermediate degradation products were identified and quantified as their 

trimethylsilyl (TMS) derivatives, using GC-MS procedures reported in our earlier 

work [21]. The instrument was a Varian 3400CX GC equipped with a 30 m DB-5 

column, coupled to a Finnigan Magnum ion trap mass spectrometer. The 

temperature program was 120 °C for four min, followed by a ramp to 200 °C at 5 

°C/min, then ramp at 15 °C/min to 280 °C. An HP 5890 gas chromatograph with FID 

detection was also used for routine quantification. 

TOC Analysis. 2.4 mg of 4-methoxyresorcinol (or 4-chlororesorcinol) in 8 mL 

of Dl water with 4 mg of catalyst (initial TOC 183 ppm), was irradiated by 419 nm 

(6x8W, Bayonet) light for 3 h. After filtering Ti02 with micro-syringe Millipore filters, 

the removal of TOC of reaction mixture was analyzed by Shimadzu 5000A TOC 

analyzer. Experiments for the time profile of TOC removal were also carried out 

under the same reaction condition with 30 min of sampling interval. 
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5.3 .  Resul ts  

Characterization of modified photocatalyst (\NOx-TiOJ 

XRD Analysis: X-ray diffraction patterns were measured on the final sintered 

photocatalysts using a Scintag 2000 X-ray diffractometer and Cu Ka radiation of 

wavelength 1.54 Â in the range 20-70 (20). XRD data shows the phase 

transformation of titania. Titania containing 0% W in Figure 2 shows both rutile and 

anatase peak in the range of 20 to 70 degree (20). The tungstated titania shows a 

distinct hindering of phase transformation from anatase to rutile during sintering 

process. This XRD result is good agreement with the result from Li et al. [2], We 

tried different source of tungsten such as ammonium tungstate and ammonium 

paratungstate. This change of tungstate source did not affect the composition of 

crystal phase of W0x-Ti02. We applied lower sintering temperature (923 K) rather 

than Li's 973 K to minimize the phase transformation to rutile at higher sintering 

temperature. 
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Figure 2. XRD powder diffraction spectra. Anatase phase (A) and rutile phase 

were assigned by reported XRD data from Li [2] and Andersson [22]. 

It has been reported by several studies that sol-gel sample of Ti02 should 

undergo a phase transformation from anatase to rutile during sintering treatment [4, 

23, 24]. In general, higher sintering temperatures lead to greater rutile formation. In 

this study, all the samples were sintered at 923 K and their diffractograms are 

described in Figure 2. The XRD results indicated that all the W0x-TI02 samples 

contained lower fraction of rutile than the pure Ti02. Obviously from Figure 2, 

tungsten oxides hindered the phase transformation from anatase to rutile during 

sintering step [2, 25]. 
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SEM analysis. Scanning electron micrographs of the produced materials 

were obtained with a Hitachi S-2460N microscope. Samples for SEM analyses were 

prepared by gold coating. Sample containing no W were analyzed as control 

experiments. Catalysts containing 1, 3 and 5% of W (mol %) were analyzed. 

Samples prepared by different milling methods were also analyzed. Hand ground 

Ti02 samples by using agate mortar and pestle yielded material with a wide range of 

particle sizes: 100 nm to a few micrometers. Samples which were prepared by 

PR EX® mill (ball mill, which grinds samples by placing them in a cylindrical 

agate vial along with agate ball as a grinding element, and imparting motion to 

the container) showed smaller particle sizes (20 - 100 nm) and less variation in 

particle sizes. The particle sizes among different mol percentage of W were not 

significantly different. DeGussa P25 was also checked by the same method. It 

shows much smaller particle size; such as 10-30 nm, but most of Ti02 particles are 

agglomerated (1 jim - 5 jim) in P25. The location of W should be characterized by 

different experiment like SEM-EDX. 
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5 «m 

Figure 3. (a) SEM image of Ti02 (0 % W) hand ground using agate mortar and 

pestle. 

l um 

Figure 3. (b) SEM image of Ti02 (0 % W) ground using PREX® mill (agate ball mill). 
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Figure 3. (c) SEM image of W0x-Ti02 (1% W) ground using PREX® mill (agate ball 

mill). 

Figure 3. (d) SEM image of W0x-Ti02 (3% W) ground using PREX® mill (agate ball 

mill). 
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Figure 3. (e) SEM image of W0x-Ti02 (5% W) ground using PREX® mill (agate ball 

mill). 

Figure 3. (f) SEM image of Ti02 P25 DeGussa show small particle size (10-30 nm), 

but most of Ti02 particles are agglomerated (1 - 5 ^urn). 
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Figure 3. (g) SEM image DT 52; (3% W) W0x-Ti02 prepared by incipient wetness 

method. 

Figure 3. (h) SEM image W0x-Ti02 (3% W) prepared by P 25 DeGusa with incipient 

wetness method. 
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Figure 3. (i) SEM image W0x-Ti02 (3% W) prepared by PC 50 Millennium Chemical 

with incipient wetness method. 

Ti02 prepared by sol-gel method and sintered at 923 K show the same 

characteristic particle shape of anatase which was reported by Anderson et al. [22]. 

Based on the SEM results, the particle size of homemade W0x-Ti02 is larger than 

that of DeGussa P25. Because photocatalytic activity is increased as the particle 

size decreases, DeGussa P25 may have advantage in the particle size over 

homemade W0x-Ti02save defects sites provided by mixture of 70% of anatase and 

30% of rutile. However, the effect of particle size on photocatalytic activity is 

saturated at the particle size below 200 nm [6]. Increased surface area not only 

enhances active sites but also increases chance of recombination of hole and 

electron. Homemade W0x-Ti02 can take the advantage of enhanced photocatalytic 

activity due to the WOx as long as keep the particle size below 200 nm. In addition, 



www.manaraa.com

139 

homemade W0x-Ti02 has no problem of agglomeration, but DeGussa P25 shows 

extensive agglomeration due to its small particle size. Differently prepared (incipient 

wetness method for P25 Degussa and PC 50 Millennium Chemical) W0x-Ti02 and 

commercial DT 52 shows agglomerated shapes under size between 200 nm and 2 

|im. 

SEM-EDX Analysis. EDX data show the presence of Ti, O, and W atom and 

mol % of each atom. This is a mapping technique helped to see the location of W 

(tungsten atom) and it has a spatial resolution between 200 nm and 1 \xm. Based on 

EDX results, tungsten atom is evenly dispersed all through the Ti02 particles. As a 

control experiment physical mixture of W03 and Ti02 shows distinctive feature 

compared to W0x-Ti02 samples, which presented evenly dispersed tungsten atom 

through the whole W0x-Ti02 particle. The physical mixture has localized distribution 

of tungsten atom shown as bright spot on the SEM-EDX map. This result indicates 

that W0x-Ti02 prepared by sol-gel method does not have large-scale segregation of 

WOx islands or particles. However, information at atomic resolution, such as the 

depth profile of WOx-TiOs or tungstate distribution information on small particle (<1 

fxm) is difficult to collect due to the limitation of the instrument. Other W0x-Ti02 

prepared by incipient wetness method generally shows similar SEM-EDX images as 

the sol-gel WOx-TiOz. 
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Figure 4. (a) SEM-EDX map of Ti02 (0% W) hand ground (10 across from left to 

right). 

Figure 4. (b) SEM-EDX map of W0x-Ti02 (1% W) ground using PREX® mill (10 jim 

across from left to right). 
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ISE/BSE. 255 

Figure 4. (c) SEM-EDX map of W0x-Ti02 (3% W) ground using PREX® mill (10 jim 

across from left to right). 

SE/BSE,255 

Figure 4. (d) SEM-EDX map of W0x-Ti02 (5% W) ground using PREX® mill (10 jim 

across from left to right). 
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Figure 4. (e) SEM-EDX map of physical mixture of ammonium tungstate (c.a. 3% by 

mol ) and Ti02(10 |im across from left to right). 

NaKa.G 

Figure 4. (f) SEM-EDX map of DT 52; (3% W) W0x-Ti02 prepared by incipient 

wetness method (10 across from left to right). 
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XPS analysis. XPS analysis was carried out to determine the chemical composition 

of the catalysts and the valence states of various species present in Figure 5. For 

the pure Ti02, the Ti 2p peaks are narrow with slight asymmetry and have a binding 

energy of 460.88 eV, attributed to Ti4+. For the 3% W0x-Ti02, the spectrum appears 

in a slightly decreased intensity, perhaps due to the tungsten oxides being doped in 

the lattice of Ti02. The binding energy was 0.48 eV higher than that of pure Ti02 

which implies an intimate mixture of W and Ti, at least on coverage near the surface. 

The peak intensity of 0 1s in 3% W0x-Ti02 was also smaller than that of Ti02 due to 

WOx being doped on the surface of Ti02. The binding energy was 0.4 eV higher than 

that of pure Ti02. Both decreased intensity and increased binding energies of Ti 2p 

and 0 1s in W0x-Ti02 consistently reflect the effect of compositing WOx to Ti02. A 

peak at 532.65 eV for the 3% W0x-Ti02 agree with the O 1s electron binding energy 

for WOx molecule. Ti02. For the pure Ti02, the O 1s peak was also narrow with slight 

asymmetry and had a binding energy of 532.25 eV. These results are in good 

agreement with previous reports except ca. 2 eV differences that may be due to a 

systematic error [2, 26-29], The W 4f peak is boarder and deformed by Ti 3p and 

other possible mixed valence of W4+, WxOy
n" (W5+), and W6+. Thus, the assignment of 

the existence of the precise mixtures of W02, W03, and some non-stoichiometric 

tungsten oxides is difficult by fitting analysis. 
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Figure 5. (a) XPS spectra for Ti 2p from pure Ti02and the 3% WOx- Ti02. 
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Figure 5. (b) XPS spectra for O 1 s peak from pure Ti02 and the 3% WOx- Ti02. 
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Figure 5. (c) XPS spectra for W 4f peak from pure Ti02and the 3% WOx- Ti02. 
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chlororesorcinol with W0x-Ti02 under visible light irradiation. 

The efficiency and some selectivity of photocatalytic degradation using the 
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The reaction of 4MRC and 4CRC photo-degradation showed that the WOx 

impurity dispersed in Ti02 could enhance the photocatalytic activity of Ti02 

significantly under visible light irradiation. Because it is not a hydroquinone, 4-

methoxyresorcinol (1) is considerably more stable than its isomer 2-

methoxyhydroquinone in the presence of 02. No dark degradation was observed. 

Direct irradiation in the absence of Ti02 led to its decomposition, but about 10 times 

slower than that under normal conditions. The products of direct irradiation were 

different from Ti02 mediated photocatalytic degradation and the direct irradiation 

products were not significant under normal photocatalytic degradation conditions 

[21]. 

Dark adsorption experiments were carried out to see the effect of adsorption 

of 4MRC in photocatalytic degradation at three different pHs; 2, 7, and 12. The 

extent of adsorption of 4MRC was determined by UV-VIS spectroscopy. Samples 

were prepared using 25 mg of catalyst (W0x-Ti02 or P25) in 20 ml_ water and 

various concentration of 4MRC. Figure 6 shows the residual adsorption ffor three 

sets of samples: no Ti02, W0x-Ti02, and P 25. The adsorption pattern of 4MRC at 

pH 2 and 7 was very similar. There was significant adsorption of 4MRC neither on 

W0x-Ti02 nor on DeGussa P 25. Under the basic condition, UV spectrum of 4MRC 

was changed due to base promoted decomposition; Xmax has changed from 286 nm 

under pH 2 and 7 to 301 nm. Another absorption at shorter wavelength, 245 nm 

was observed. These changes in basic condition were due to the degradation (dark 

reaction) of 4MRC into oxalic acid, fumaric acid, and other degradation 
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intermediates. Overall adsorption of 4MRC on W0x-Ti02 and P 25 was not 

significant. 
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Figure 6. Residual adsorption of 4MRC in three pHs; (a) pH=2, (b) pH=7, and (c) 

pH=12, #: no Ti02; • : W0x-Ti02 ; •: P 25. 
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Li et al. reported that both hydroxylation (2, 2-hydroxy-4-

methoxyhydroquinone) and ring-opening (3) products appear as major primary 

products from the Ti02-mediated photocatalytic degradation by using P25 DeGussa 

[21]. The other large peak (4) is clearly a secondary product derived from 

hydroxylation and demethylation. The quinone derived from a simple hydroxylation 

(5) and the product derived from both hydroxylation and ring-opening (6) are 

observed as mid-sized peaks. Li et ah reported that ring-opening and hydroxylation 

are competitive processes for this compound [21]. They also reported separate 

experiment in which degradation of 4MRC was carried out by 300 nm photolysis of 

solution without Ti02in the presence of H202 as a source of hydroxy I radicals. The 

major degradation product was (2), consistent with the supposition that arene 

hydroxylation is from the chemistry of the hydroxy I radical. Although some ring-

opened products with only a few carbons were observed, (3) appeared only as a tiny 

trace peak [21]. 

Photocatalytic degradation of 4-methoyresorcinol by Xe-Arc lamp with cut-off 

filter (< 435 nm). 

Standard conditions for degradation were 100 mL aqueous suspensions 

containing 50 mg of photocatalyst and 0.2 mM of 4MRC. Xe-Arc lamp (150 W) with 

cut-off filter (Ealing® 50% of transmittance at 435 nm) was used as an irradiation 

source. The pH of solution was adjusted by HCI (pH 2), phosphate buffer (10 mM, 

pH 7.0), or NaOH (pH 12). Ti02 has two major crystal types such as anatase and 
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rutile. This applied light has longer wavelength than the band gap of both anatase 

and rutile. Thus photoactivation of the photoctalysts will be through visible light 

activation due to doping or sub-bandgap activation due to charge transfer complex 

formation. For the degradation experiment using Xe-Arc lamp, 5 mg of photocatalyst 

was used in 10 ml_ of solution using conditions otherwise identical to the standard 

conditions. Observed intermediates are oxalic acid, fumaric acid, malic acid, 2,5-

dihydroxybenzoquinone (secondary product), succinic acid, 1,2,4,5-benzeneteraol, 

and 4-hydroxy-2-methoxyhydroquinone (primary product) as shown in Figure 7. 
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Figure 7. PCD of 4-MRC Xe-Arc w/ 435 cut-off filter; product distribution at 3 

different pHs (equal GC response was assumed for degradation products). Those 

deradation products are from high conversion (greater than 50 % conversion). 
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Photocatalytic degradation of 4MRC with 3% W0x-Ti02 of using a Xe-Arc 

lamp was compared at pH 2, 7 and 12. As the pH increased to basic conditions, the 

degree of degradation was increased after a fixed interval of photolysis. The amount 

of hydrxoylated products were increased as pH increased, and furthermore, 

secondary degradation intermediates such as 2,5-dihydroxybenzoquinone, fumaric 

acid, and malic acid were observed as major peaks in GC-MS spectra. Based on the 

observation of degradation intermediate of down stream such as oxalic acid, fumaric 

acid, and malic acid, the ring-opening product should have been formed. However, 

the ring-opened product was not observed. It may due to the faster degradation than 

formation of ring-opened product under strong Xe-Arc irradiation. The oxalic acid, 

fumaric acid, and malic acid observed as major degradation intermediate at pH12, 

where the degradation reaction proceeded too far down stream faster than the lower 

pH under relatively long (3 h) irradiation time with intensive Xe-Arc (150 W) 

irradiation than normal UV lamp (8 W). 

Photocatalytic degradation of 4-methoyresorcinol at 419 nm. 

40 mL of 0.2 mM MRC with 20 mg of photocatalysts (0, 1, 3, and 5% WOx-

Ti02) was irradiated by 419 nm UV lamp for 1 h under open air with stirring. The 

primary ring-opening product was observed as a major intermediate when the 419 

nm lamp was used in a 1h, low conversion experiment. Among 1, 3, and 5% WOx-

Ti02, The 1% doped W0x-Ti02 shows the higher initial degradation as shown in 

Figure 8. 
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Figure 8. PCD of 4MRC at 419 nm for 1 h; 4MRC is off scale from low conversion 

(less than 20% of degradation). 

The relatively shorter reaction time (1 h) and reduced intensity of irradiation 

source (6 X 8 W) compared to Xe-Arc (150 W, 3h irradiation) reaction gave more 

information about early degradation intermediates under low conversion state. 

Under the same photodegradation conditions, the pure Ti02 only yield small amount 

(less than 4% of conversion) 2-hdroxy-4-methoxyhydroquinone as shown in Figure 

8. 
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Degradation efficiency comparision. The determination of photo-catalytic 

degradation efficiency for 4-methoxyresorcinol was carried out with different photo 

catalysts. 4-methoxyresorcinol (2.4 mg) dissolved in 8 mL suspension of 

photocatalyst in Dl water. The mixture was irradiated by 419 nm lamps (6 x 8W) for 

3 hours under open air in a Rayonet equipped with merry-go-round. Photoreaction 

mixtures were treated with usual filtration and silylation (1 mL pyridine, 0.2 mL 

HMDS, and 0.1 mL TMSCI) and analyzed by GC and GC-MS. W0x-Ti02 

(containing 3% WOJ and DT 52 from Millennium Chemical (3% of WOx was doped 

by incipient wetness method) showed significant degradation of substrate in 3 hours 

as shown in Figure 9 (a). DeGussa P25, and pure Ti02 (0% W0x-Ti02 which is 

containing 0% of WOJ do not degrade substrate in significant level. 
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Figure 9. (a) Degradation of 4-methoxyresorcinol comparison among different 

photocatayst with 419 nm irradiation for 3h. 
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Figure 9. (b) Product distribution of photodegradation of 4-methoxyresorcinol with 

different photocatayst using 419 nm irradiation. 4MRC is off scale from low 

conversion (less than 10% of degradation). 

Another set of degradation efficiency experiments with a similar molecule to 

4MRC, 4-chloromethoxyresorcinol (4MRC), was carried out under the same 

condition as the previous experiment. 4-chloromethoxyresorcinol (2.5 mg) was 

dissolved in 8 mL of suspension of photo-catalyst in Dl water. The mixture was 

irradiated at 419 nm lamps (6 x 8W) for 3 hours under open air in a Rayonet 

equipped with merry-go-round. Photoreaction mixtures were treated as usual with 

filtration and silylation and analyzed by GC and GC-MS. W0x-Ti02 (containing 3% 
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WOJ and DT 52 show significant degradation of substrate in 3 hours as shown in 

Figure 10. P25 and pure Ti02 (containing 0% WOJ do not degrade substrate in 

significant level. 

o c 
S 
o <f> 
CD 

O 
O 
_c 
G 

"b 
c 
o 

100.0 

80.0 

60.0 

•2 40.0 
CO 

2 
U) 0) 

20.0 

0.0 

• 0% W0x-Ti02 
O P 25 
B 3%W0x-Ti02 
O  D T 5 2  

NM# M 
m 
w 

Figure 10. Degradation of 4-chlororesorcinol comparison among different 

photocatayst with 419 nm irradiation for 3h. 

TOC Study from photocatalytic degradation of 4-methoxyresorcinol and 

of 4-chlororesorcinol. 

4-methoxyresorcinol (2.4 mg) dissolved in 8 mL suspension of photocatalyst 

in Dl water. The mixture was irradiated by 419 nm lamps (6 x 8W) for 3 hours under 

open air in a Rayonet equipped with merry-go-round. Photoreaction mixtures were 

treated with usual filtration. Then, the removal of TOC was analyzed by Shimadzu 

5000A TOC analyzer. The initial TOC measured from the standard solution (2.4 mg 
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of 4-chlororesorcinol in 8 mL of Dl water) was"! 83 ppm. TOC removal was not as 

high as disappearance of starting material (4-methoxyresorcinol). This implies that 

initial reaction intermediates are hydroxylation products and mineralization of these 

would take further degradation time. 
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Figure 11. TOC Study from photocatalytic degradation of 4-methoxysorcinol. 

Another set of TOC removal experiments with 4-chloromethoxyresorcinol 

(4CRC) was carried out under the same condition as the previous experiment. 4-

CRC (2.5 mg) was dissolved in 8 mL of suspension of photo-catalyst in Dl water. 

The initial TOC measured from the standard solution (2.5 mg of 4CRC in 8 mL of Dl 

water) was 157 ppm. Again, TOC removal was not as high as disappearance of 

starting material (4CRC). TOC removal trend was similar to previous experiment 

with 4-methoxyoresorcinol. In both cases, hydroxylation products are major 
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degradation intermediates as shown by GC-MS study in initial photo catalytic 

degradation. Thus relatively low TOC removal compared to total conversion is 

correlated to this earlier reaction with slow ring opening followed my further 

decomposition. 
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Figure 12. TOC Study from photocatalytic degradation of 4-chlororesorcinol. 
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Degradation efficiency comparison Differently prepared W0x-Ti02. 

Differently prepared (incipient wetness method for P25 Degussa and PC 50 

Millennium Chemical) W0x-Ti02 also shows similar effect of photo-activation by 

visible light. For comparing photocatalytic degradation efficiency, 7 mg of 4-

methoxyresorcinol and 12.5mg of catalyst in 25 mL of Dl water was irradiated visible 

light of (419 nm, 4 x 8W) for 12 h. Following the removal of water, the intermediate 

degradation products were identified and quantified as their trimethylsilyl (TMS) 

derivatives, using GC-MS procedures reported in our earlier work. The removal of 

TOC was analyzed by Shimadzu 5000A TOC analyzer as usual. W0x-Ti02 by sol-

gel method consistently shows higher degradation efficiency (10-20%) shown in 

Figure 14 and 15. There was no significant difference in detected degradation 

products shown in Figure 16. 
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Figure 14. Degradation of 4-methoxyresorcinol comparison by using differently 

prepared W0x-Ti02 with 419 nm irradiation. 
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• Sol-gel W0x-Ti02 
• 

Figure 15. TOC removal comparison from the photocatalytic degradation of 4MRC 

by using differently prepared W0x-Ti02 with 419 nm irradiation. 
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5. 4. Discussion 

Li and coworkers carried out systematic approach to characterize tungstated 

titania (W0x-Ti02) prepared by sol-gel method. They also test the photodegradation 

efficiency of methylene blue (MB) using W0x-Ti02 under visible light irradiation [2], 

The photocatalytic activity (chemical composition and optical absorption) of WOx-

Ti02 was examined by XRD, UV-VIS absorption spectra, XPS, photoluminescence 

spectra (PL), and electron-field-induced surface photo voltage spectra (EFISPS). 

The order of photo activity from weak to strong had a good agreement with that of 

PL intensity and that of EFISPS intensity from strong to weak. They reported that 

MB in aqueous solution was successfully photo-degraded using W0x-Ti02 under 

visible light irradiation. They proposed that tungsten oxides doping into Ti02 could 

shift the light absorption band from near UV range to visible range. 

We hypothesize that this visible light excitation of W0x-Ti02 facilitates the 

photo-catalytic degradation of 4-methoxyresorcinol (4MRC), and 4-chlororesorcinol 

(4CRC). This hypothesis is consistent with the data in figure 8-15. We observed 

that the photo activity of W0x-Ti02 is significantly higher than that of pure Ti02, and 

sol-gel prepared W0x-Ti02 also shows higher photo activity than that of tungsten 

oxide coated Ti02(DT 52 from Millennium Chemical). 

Based on basic conception for modification of photo activity of Ti02 as 

mentioned previously, We prepared W0x-Ti02 by a sol-gel method with an attempt 

to activate the modified Ti02 photocatalysts by the visible light, and to decrease the 

rapid recombination of excited electrons/holes during photoreaction. The W0x-Ti02 
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catalysts were characterized by XRD, XPS, and SEM-EDX. Our XRD result is in 

very good agreement with the result by Li et al [2]. Obviously, tungsten oxides 

hindered the phase transformation from anatase to rutile during sintering. We 

applied even lower sintering temperature (923 K) than Li's experiment (973 K) to 

further inhibit the phase transformation to rutile to better approach the successful 

mix of phase seen in P25 DeGussa. 

Under the visible light irradiation with photocatalyst, photoactivation of the 

photoctalysts will be through visible light activation due to doping or sub-bandgap 

activation due to charge transfer complex formation [2, 30]. 4MRC would form 

charge-transfer complex intermediate more easily than 4CRC, which has electron 

withdrawing group. It would result in higher initial degradation on pure Ti02 with 

MRC than CRC through electron transfer pathways by forming charge transfer 

complex (Figure. 9 & 10) [30]. However, overall photocatalytic degradation of these 

probe molecules with W0x-Ti02 shows similar degree due to major hydroxy I radical 

mediated degradation under visible light photo activation. 

Experiments for evaluating degradation efficiency between homemade WOx-

Ti02 (particle size 20-100 nm) with DT 52 from Millennium Chemical (particle size 

15-25 nm), shows that particle size is not the only factor that decides the efficiency 

of photo catalysts. Larger particle sized homemade WOx-TiOz results better photo 

catalytic degradation efficiency than DT 52. Differently prepared (incipient wetness 

method for P25 Degussa and PC 50 Millennium Chemical) W0x-Ti02 also shows 

similar effect of photo-activation by visible light. W0x-Ti02 by sol-gel method 
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consistently shows higher degradation efficiency (c.a. 20%). It is difficult to explain 

thoroughly this result at this point because photocatalytic activity is affected by much 

more factors than simply particle size i.e., agglomerate size, crystallization condition, 

surface property also affect to photocatalytic activity. One possible speculation for 

better photocatalytic activity of W0x-Ti02 by sol-gel method may due to less 

formation of aggregate by W0x-Ti02 from sol-gel method. Future work could refine 

the degradation efficiency precisely by controlling the particle sizes, defective sites 

of Ti02, agglomerate size etc. 

5. 5. Conclusion 

With an attempt to activate the modified Ti02 photocatalysts by the visible 

light and decrease the rapid recombination of excited electrons/holes during 

photoreaction, W0x-Ti02 powder was prepared by a sol-gel method. 

The W0x-Ti02 catalysts were characterized by XRD, XPS, and SEM-EDX. 

The attempt to decompose 4-methoxyresorcinol and 4-chlororesorcinol in aqueous 

solution by using W0x-Ti02 under visible light was successfully achieved. The 

removal of TOC was lower than the degree of degradation of probe molecules. It is 

correlated that the hydroxylation reaction is the major initial reaction. 

The modification of Ti02 by W shows its benefit of utilizing visible light for 

photocatalytic degradation of organic compounds. Differently prepared (incipient 

wetness method for P25 Degussa and PC 50 Millennium Chemical) W0x-Ti02 also 
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shows similar effect of photo-activation by visible light. WOx-TiOs by sol-gel method 

consistently shows higher degradation efficiency 
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Chapter 6 

GENERAL CONCLUSION 

Photocatalytic degradation of organic contaminants in water was investigated 

by aqueous suspension of Ti02 and modified-Ti02. The objectives of these studies 

are composed of elucidation of degradation mechanisms of organic contaminants 

under various photo-catalysis environment, optimization of degradation efficiency, 

and enhancement of the activity of photo-catalysts. 

The partial photocatalytic degradation of maleic acid has been investigated 

with the purpose of elucidating the mechanism of catalyst action for some of the 

early transformations. In particular, it is proposed that the photo-catalytically 

induced cis-trans isomerization of maleic acid and fumaric acid is initiated by 

adsorption-dependent reductive electron transfer. The bases for this conclusion 

include the acid's superior adsorption at low pH, the near exclusivity of this process 

in the absence of 02 (which usually acts as an electron acceptor), the increase in 

observed isomerization rate in the absence of 02 (contrary to almost any other 

known photocatalytic degradation process), and the suppression of isomerization 

with the addition of fluoride to the system. An investigation into the involvement of 

superoxide in the oxygenation reactions observed near neutral and higher pH clearly 

demonstrates that superoxide does not initiate the chemistry. Photocatalytic 

degradation of maleic acid in aqueous Ti02 suspension provides an important insight 
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into the degradation mechanism of major aromatic pollutants due to maleic acid is 

one of major four carbon intermediates from the photocatalysis of 4-chlorophenol 

and other aromatic organic contaminants in water. The aliphatic intermediates most 

frequently encountered during the degradation of aromatic compounds are short-

chain carboxylic diacids, as maleic, fumaric and oxalic acids, which have been 

detected during the mineralization of a variety of organic chemicals. Thus, the 

understanding of the mechanism of degradation of these compounds can assist us 

for the ascertaining of the better conditions to perform the mineralization of 

recalcitrant organic compounds. HO* and 02 play significant roles in the 

photocatalytic degradation of aliphatic acids. An investigation into the possibility that 

other reactions begin with the reaction of maleic acid with superoxide in a similar 

electron/nucleophile-accepting mode produced results in clear contradiction with this 

idea. It is presumed that the formation of tartaric acid and dihydroxyfumaric acid -

along with other smaller intermediates - occurs by conventional mechanisms 

beginning with hydroxy I attack on the substrate. OH radical adding to the 

unsaturated bond to form a carbon-centered radical. In the presence of oxygen such 

carbon-centered radicals are converted into the corresponding peroxy radicals. 

Then, peroxy radicals undergo decay by a bimolecular mechanism by forming 

tetroxide radical and decayed by Russell process. 
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The challenge to decompose a cyanuric acid, a recalcitrant species, by 

modifying Ti02 suspension was carried out in Ti02/F aqueous suspensions. The 

addition of fluoride to aqueous suspensions of Ti02 has proved to be an important 

mechanistic tool in unraveling a long-standing conundrum in photocatalytic 

degradation. By using this method in parallel with other methods for producing 

homogeneous hydroxyl-type reagents, it is shown that cyanuric acid is susceptible to 

degradation under easily accessible conditions. There is another supportive 

evidence that Ti02/F method was successfully applied to degrade 4-f-butylpyridine 

(which is also almost untouched by ordinary Ti02 photolysis condition. It gives 

predictable hydroxylated intermediates, and thus supports the hypothesis that the 

induced reactivity is due to the formation of homogeneous HO*. The reason that 

cyanuric acid is ordinary inert to Ti02-mediated photocatalytic degradation appears 

to be that simply is not bound to the reactive portions of the Ti02 surface to any 

measurable extent, perhaps in combination with its lower reactivity evident from 

other reactions. Its inherent chemical resistance to degradation is still exhibited in 

the inability to observe intermediate degradation products, regardless of degradation 

methods, because the intermediates are consumed more rapidly than they are 

formed. 

An important unsettled mechanistic point is the degradation mechanism of 

phosphonate was investigated by isotope studies from the degradation of dimethyl 

phenyl phosphonate (DMPP). Exposure of DMPP and related simple phosphonates 

to Ti02-mediated photocatalytic conditions results first in the loss of one of the 
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methyl esters. The unsettled mechanistic point is the mechanism by which the 

methyl is removed. The question is whether attack occurs at the methyl or at the 

phosphorus or both. Through the isotope studies of Ti02-mediated photocatalytic 

degradation of phosphonates, now we can well understand including removal of the 

alkyl ester portion of the compounds to produce phosphonic acid monoesters among 

the primary steps. While there is ambiguity in the interpretation of small H/D 

selectivity in the dealkylation of DMPP by TI02 photocatalysis and various other 

methods, the results of 180 labeling are clear. They do not rely on any kinetic effect. 

The retention of 180 in the formation of MMPP by demethylation of DMPP clearly 

demonstrates that the dealkylation mechanism involves degradation of the methyl 

group exclusively, and neither attack at phosphorus by HOads or a related species, 

nor photoinduced hydrolysis. 

The Modification of Ti02 is aims to increases activity with an attempt to 

activate the modified Ti02 photocatalysts by the visible light and decrease the rapid 

recombination. Photocatalytic degradation of 4-methoxy resorcinol by using modified 

composite photo catalyst, W0x-Ti02 was carried out for evaluation of photocatalysis 

characteristics. There has been recent interest in W03-coated DeGussa P25 Ti02 

because it has higher activity than native material. With an attempt to activate the 

modified Ti02 photocatalysts by the visible light and decrease the rapid 

recombination of excited electrons/holes during photoreaction, W0x-Ti02 powder 

was prepared by a sol-gel method. The W0x-Ti02 catalysts were characterized by 

XRD, XPS, SEM and SEM-EDX. The degradation of 4-methoxy-resorcinol by using 
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W0x-Ti02 under visible light irradiation was observed. Modified catalyst shows 

significant degradation efficiency under 419 nm light and longer wavelength (> 435 

nm). The modification of Ti02 by W shows its benefit of utilizing visible light for 

photocatalytic degradation of organic compounds. Differently prepared (incipient 

wetness method for P25 Degussa and PC 50 Millennium Chemical) W0x-Ti02 also 

shows similar effect of photo-activation by visible light. This is the first repot that 

directly compared the photocatalytic degradation efficiency between W0x-Ti02 

prepared by traditional incipient wetness method and W0x-Ti02 by sol-gel method. 

W0x-Ti02 by sol-gel method consistently shows higher degradation efficiency (c.a. 

20 %). This is possibly due to less formation of aggregate by W0x-Ti02 from sol-gel 

method. The future work could refine the degradation efficiency precisely by 

controlling the particle sizes, defective sites of Ti02 and agglomerate size etc. 

As we explored the photo-catalytic degradation of organic pollutants in 

aqueous system, we tried to maximize the advantageous approaching method from 

chemistry. Our research interest is different from engineering aspects, which mainly 

concern about optimizing degradation efficiency. Here, we tried to collect 

information about mechanisms of photo-catalytic degradation and degradation 

intermediates. The understanding of mechanisms of degradation of organic 

contaminants can assist us for the ascertaining of the better conditions to perform 

the mineralization of recalcitrant organic compounds. The photo-catalytic 

degradation of organic pollutants generally produces still harmful intermediates 
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before total mineralization. Therefore, the information of the degradation 

intermediates is also necessary to understand and characterize photo-catalytic 

degradation process. In addition to these mechanism and intermediate study, we 

could utilize various kinds of control experiments to clarify the major reactive species 

under photo-catalytic degradation conditions. This information is critically useful to 

propose reasonable degradation mechanism. We took advantage of chemical 

modification of Ti02 based photo-catalysts was carried out in two ways. In one way, 

we modified adsorbed surface functional groups on Ti02 from OH to F by adding 

fluoride ions in aqueous suspension at low pH. The addition of fluoride to aqueous 

suspensions of titania has proved to be an important mechanistic tool in unraveling a 

long-standing conundrum in photocatalytic degradation of cyanuric acid which was 

degraded only by free hydroxy I radical. In the other way, we modified Ti02 by 

making composite semiconductor with W. This modification results in both 

retardation of fast recombination of photo activated electron/hole and absorption of 

visible light for activation of this composite semiconductor photo-catalyst. All above-

mentioned strategies are well representing the characteristics of approaching 

method from chemistry. 



www.manaraa.com

172 

APPENDIX 

Millennium Inorganic chemical Ti02 

Composition 

Ti02 (%) 

Specific 

surface area 

(BET), m2/g 

Average 

particle 

size 

Agglomerate 

size 

PH 

(10% 

aqueous 

slurry 

PC 10 >99  10.6 1.5 N.A. 4.5-6.5 

PC 50 98.2 50.1 20-30 nm 1.5 |im 2.5-4.5 

PC 100 97.9 

(anatase 

>99) 

87 15-25 nm 1.2 \im 1.5-3.5 

PC 500 82.8 

(anatase 

>99) 

335 5-10 nm 1.2-1.7 p,m 4.0-8.0 

DT 52 90 (Ti02) 

(anatase) 

10 (wcy 

89 15-25 nm 0.5-2.9 p,m 1.2-3.0 
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